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ABSTRACT

Mollo, Christopher Gevard. M.S.M.E., Purdue University.
August 1987. A Numetrical Method For Analyzing The Optimal
Performance Of Active Noise Controllers. Major Professor:
Dr. R.J. Bernhard, School of Mechanical Engineering.

An optimal active noise controller is formulated and
analyzed for three different active noise control problems.
The first problem formulated 4is the active control of
enclosed or partially enclosed harmonic sound fields where
the noise source strengths and enclosure boundarvy
description are known. The enclosure boundary is described
by either pressure, velocity, or impedance boundary
conditions. The second problem formulated is the active
control of the free field power radiated from a distributed
noise source with a known time harmonic surface velocity.
The third problem formulated 1is the active control of
enclosed or partially enclosed harmonic sound fields where
the noise source strengths or enclosure boundary
description may not be known. All three formulations are
derived wusing an indirect boundary element technique.
Formulation and verification of an indirect boundary

element method is presented. The active noise controller

formulationé for enclosures are capable of analyzing




xix

systems with generalized enclosure shapes, point noise

sources, and/or locally reacting impedance boundary

conditions. For each formulation, rvepresentative results

of optimal active noise controller case studies are

presented, and some general conclusions arve drawne.
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CHAPTER 1

INTRODUCTION

Individuals are subjected to sound practically every
moment of the day. The various sounds one encounters
throughout the day can be <classified into two general
categories: (1) desired or welcomed sound or (2) unwanted
sound or noise. It has long been recognized that noise can
dramatically affect many aspects of human life. There has
been much attention paid to the study of noise and 1its
effects on people. Research has been conducted on the
effects of noise on such aspects as blood pressure, hearing
loss, sleep disturbances, cardiovascular systems,
maternity, occupational stress, and auditory fatigue. Most
of the 1literature addresses the problem of noise in the
work place or noise in transportation vehicle passenger
compartments. Excessive noise in the work place generally
reduces employee productivity and is sometimes considered a
health hazard. Likewise, a passenger’s comfort level is
adversely affected by excessive passenger compartment

noise. Consequently, methods of reducing noise continue to



be studied with significant interest.

For the most part, noise is attenuated by means of
passive methods. Passive methods either absorb energy from
the acoustic system through the use of materials such as
foams or block the transmission of acoustic energy with
barriers. When the wavelength of the sound is small (i.e.,
the frequency is high), passive methods perform quite well.
However, passive methods are inefficient when attenuation
of rvelatively 1low frequency noise is desired. Very thick
sound absorbing surfaces or heavy barriers are needed to

effectively attenuate low frequency noise.

On the other hand, active noise attenuation methods

perform best in the relatively low frequency regime (below
500 Hz) [1]. The concept of active noise attenuation was
first documented by Paul Lueg in his 1934 U.S. Patent [2].
Lueg”s concept of active noise attenuation is based on the
principle of destructive interference of sound waves. The
noise in the environment 1is attenuated by introducing
additional sound energy of an appropriate form into the

system. In general, the functional mechanisms of active

noise attenuation are not as simple as Lueg described and

to this day are not completely understood.

The objective of the research presented in this thesis
is to develop a generalized numerical technique for

evaluating the optimal performance of active noise



controllers. Most of the analysis of active noise
controllers to date has been analytically performed for
one-dimensional acoustic systems with plane wave

propagation. Some analytical/numerical analysis of active

noise controllers for two and three-dimensional acoustic

systems has been reported. Analysis of two and three-
dimensional acoustic systems has been restricted to
regularly shaped geometries such as cylinders and
rectangular prisms. However, some of the desired

applications for active mnoise <control involve acoustic

systems with dirregularly shaped boundaries and complex

noise fields such as aircraft cabins and automobile
passenger compatvtments. As the geometry and thus, the
noise field becomes 4increasingly complex, analytical

derivation of an optimal active noise controller becomes
untrealistic. Hence, a need exists for a numerical analysis
method for the evaluation of an optimal active noise

controller for the generalized acoustic system.

Three numevrical active noise controller optimization
formulations were developed during the course of the
tesearch. The formulations were developed for different
system configurations and assumptions. All formulations
were implemented using an indirect boundary element method.
The first formulation solves for the optimal transfer
function between the noise source(s) and the controller

actuator(s) which minimizes a performance criterion. The



analysis is performed for cavity active noise control
problems where complete descriptions of the noise sources
and cavity boundary are known. The second formulation
solves for the optimal transfer function between the noise
source and the controller actuator(s) such that the free
field power vadiated from the system is minimized. A
surface velocity description of the noise source is assumed
to be known. The third formulation is similar to the first
except that no prior knovledge of the noise source
magnitudes and phasing is assumed. The magnitude and
phasing of the noise source(s) is deduced at measurement
locations. The third formulation calculates an optimal
transfer function between the measurement location(s) and
the controller actuator(s) such that a performance

criterion is minimized.

The thesis 1is organized as follows. Chapter 2
presents a literature veview on active noise controllers
for one-dimensional and' three-dimensional systems. The
development and verification of an 1indirect boundary
element method is contained in chapter 3. Chapter 4
presents the development and results for the cavity problem
where the noise soutrce(s) and boundary description are
known. The development and rtesults for the free field
radiation problem are discussed in chapter 5. The
development and Tresults for the cavity problem where the

noise source(s) are of unknown value are discussed 1in



chapter 6. Conclusions and

work are presented in chapter 7.

recommendations for further



CHAPTER 2

LITERATURE REVIEW

Due to the capability of digital control systems,
research investigations of active noise control (ANC) has
been conducted with renewed emphasis over the last few
yearse. Because this renewed interest in ANC is rvrelatively
young, there are only a 1limited number of vtesearchers
heavily involved in the field. However, a substantial body
of litervature is accumulating on the subject. This chapter
provides a general summary of articles vrelating to the
research presented in this thesis. First, a brief
historical development of active noise <controllers {is
presented. Second, articles pertaining to ANC problems in
enclosures and articles addressing ANC in free space are
discussed. Finally, some overall conclusions are drawn

from the literature review.

2.1 Historical Development Of Active Noise Controllers

In 1934 Paul Lueg filed for a patent which was

subsequently granted to him in 1936 as Patent No.



2,043,416, "Process of Silencing Sound Oscillations"” [2].
Lueg”s patent is generally recognized as the first document
on the process now labeled as active mnoise control. In
Lueg”s patent, he made practical use of the well known
phenomenon of superposition of linear systems. For linear
acoustic systems, the principle of superposition states
that the acoustic tresponse at a point in space is the sum
of the acoustic responses at that point due to a number of
individual sources. The principle of superposition is the
basis for the phenomenon of constructive and destructive
interference of acoustic waves. Lueg suggested that noise
could be attenuated through destructive interference by

artificially introducing additional sound into the system.

Lueg outlined the ©process of using destructive
interference to eliminate noise for several situations.
The first situation Lueg considered was a one-dimensional
waveguide containing noise at a single frequency. The
active noise controller consisted of a wmicrophone, an
amplifier, and a loudspeaker 1located downstream of the
microphone. The noise in the waveguide was detected by the
microphone, amplified, delayed, and reintroduced back into
the waveguide by the loudspeaker. The electronic system
(amplifier) delays the microphone signal such that the

o
sound introduced by the loudspeaker is 180 out-of-phase

with the noise at the loudspeaker 1location. Thus,



destructive intecrference results, and the noise does not
propagate beyond the 1loudspeaker. Many of the modern
active noise control solutions for plane waves imn a one-
dimensional waveguide (duct) are essentially based on
Lueg”s original concept. The second situation was that of
a sinusoidal point noise source in free space. The
detector microphone and cancellation 1loudspeaker were
positioned equidistant from the noise source (but not
necessarily at the same location). The output of the
microphone is phase inverted and immediately inputed to the
loudspeaker. A cancellation region in the near field of
the loudspeaker results. The third situation considered
non-sinusoidal noise. For non-sinusoidal noise, the noise
would be detected at the 1loudspeaker location, phase

inverted, and reintroduced at the loudspeaker.

Because the electronics were not adequate at the time
of Lueg’s patent, he was unable to implement his ideas and .
there was no demonstrated progress in the field of active
noise control until Harty Olson published his "electronic
sound absorber" in 1953 [3]. Olson furthered his ideas in

a publication 4in 1957 {4]. The electronics field had

advanced enough that Olson was successful in developing

hardware and pecvforming some initial laboratory

experiments. Olson”s "sound absorber" was a loudspeaker

enclosed in a cabinet with a microphone positioned directly



in front of the loudspeaker. The output of the microphone
drove the 1loudspeaker via an amplifier. Olson”s system
created a "zone of silence" in front of the absorber.
Olson was able to attain a maximum of almost 25 dB of
reduction at the microphone location with greater than 10
dB of reduction from 30-210 Hz. However, performance
degraded rapidly for locations away from the microphone.
Olson”s device did show promising results for the

limitations of the electronics available in the 19507s.

Also during the mid 1950°s, W.B. Conover investigated
the possibility of reducing electronic transformer hum by
active means [5,6,7]. Conover used loudspeakers in
cabinets positioned near the transformer”s encasing to
cancel the near-field acoustic pressure radiated from the
transformer. Using a 15,000 kVA transformer, Conover
obtained almost 30 dB reduction at 50 feet and 10 dB at 125
feet along the transformers axis [8]. However, Conover~s
active noise controller caused the near-field pressure to

increase at other angular positions about the transformer.

Due to the mixed successes of Olson and Conover, the
investigations of ANC were limited during the late 1950°s
and early 1960°s. A new accelerated interest in ANC
developed in 1968 with the publications of M.J.M. Jessel
and his coworkers in France. Warnaka defines the modern

era of ANC as beginning with Jessel”s work [l]. Warnaka
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suggests three reasons for the renewed interest in active

noise control:

- advanced control systems technology including the

development of adaptive systems,

- improved <comprehension of the physics of

acoustical systems, and most importantly

- the availability of sophisticated, inexpensive

control made possible by solid state electronics.

The works of Jessel and others, delineating "“the modern

era," will be discussed in detail in the next sections.

2.2 Active Noise Control In Enclosures

The field of active noise control can be divided into

two categories: conttrol of noise in enclosures, and control

of noise in free space. A special case of active noise

control in enclosures occurs when the noise propagates in

only one dimension of the enclosure at the highest

frequency considered. This special case is often referred

to as active noise control for one-dimensional ducts and 1is

conceptually the simplest active noise control problem.

Consequently, the active attenuation of noise in one-

dimensional ducts has treceived the greatest attention.
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2.2.1 One-Dimensional Enclosures

The acoustic one-dimensional system is a 1long, rigid
wall duct where the transverse dimensions of the duct are
smaller than half the wavelength of the highest frequency
considered. Consequently, acoustic waves (plane waves)
travel only in the 1longitudinal direction. A typical
schematic of a one-dimensional active noise control system
is shown in Figure 2.1. The noise in the duct is generated
by a source "upstream" and travels toward the right. The
one-dimensional enclosure is applicable to such systems as
aivr conditioning, heating, and ventilation ducts were the

noise source is usually an axial fan or muffler and engine

induction systems.

DIRECTION OF
INCIDENT NOISE

~
7

DETECTOR DOWNSTREAM
micropHone O

\ 4

CANCELING
SOURCE

CONTROLLER

Figure 2.1 - General Schematic Of A One-Dimensional Active
Noise Controller




Researchers A.R.D. Curtis, P.A. Nelson, S.J. Elliott,
and A.J. Bullmore have analytically investigated the active
control of one-dimensional enclosed sound fields [9,10].
The model wused was a long, thin tube with rigid ends. A
noise (primary) source of known strength was located at the
left end of the tube and a canceling (secondary) source was
located at the tright end. A transfer function between the
primary source strength and the secondary source sttrength
was analytically derived in the frequency domain for three
control strategies. The first control strategy considered
was the acoustic virtual earth. The acoustic virtual earth
requires that the secondary source is driven such that a
pressure null is created directly in front of the secondary
source. The second strategy investigated was the absorbing
termination. The absorbing termination requires that the
secondary soutrce is driven such that no reflections occur
at the secondary source. The 1last control strategy 1is
referred to as an optimal termination. The method of an
optimal termination requires that the secondaty source 1is
driven such that the total acoustic energy in the enclosure
is minimized. Of the strategies considered, the optimal
termination provided the greatest reduction in the acoustic
However, the optimal termination required

energy.

noncausal action of the secondary source while the other



13

two strategies were causal. A noncausal solution was
deemed acceptable only if an a priori measurement of the

primary source strength is available or when the excitation

is periodic.

Curtis et al. arrived at some important conclusions in
theivr study of one-~dimensional systems. It was concluded
that minimization of the acoustic potential energy is a
move suitable method than minimization of the total
acoustic energy if sound pressure is the quantity to Dbe
reduced. The secondary source was shown to be most
effective when it was positioned at a pressuvre antinode.
If a single secondary source is well located, it is able to
cancel most of the rvesonant sound field and additionai
secondary sources avre unnecessaty. The greatest reductions
in the acoustic potential energy attained with the optimal
termination occurred at the resonant frequencies of the
duct. At the duct antiresonant frequencies, no rteduction

in the acoustic potential energy was possible.

§.J. Elliott and P.A. Nelson analytically investigated
the implications of causality for the one-dimensional
system [11]. The system considered was composed of a
detector microphone wupstream of a secondary source. The

detector microphone measurtred the incident traveling plane
waves otriginating from a noise source. The output of the

detector microphone was input to a controller with transfer



14

function Ti(w). The controller drives the secondary
source. Causality was determined by examining the inverse
Fourier transform of Ti(m). Damping in the duct was
accounted for by using a complex wavenumber. The first
case considered Tj(w) such that no sound propagated past
the secondary source. For the first case, the impulse
response function of Ti(w) was causal and infinite in
duration. For the second case, Ti(w) was solved such that
the total sound power in the duct was minimized (i.e., to
control the traveling waves in both directions). For the
second case, the controller impulse response function had a
causal and a noncausal part. If the <conttroller was
constrained to be causal, the optimal causal controller
turned out to be the causal portion of the wunconstrained
controller. Thus, even for a noncausal situation, an

optimal causal controller does exist which will provide

some amount of attenuation.

An application of the acoustic virtual earth for
attenuating broadband noise in an open ended duct with no
flow was described by M.C.J. Trinder and P.A. Nelson [12].
The active noise control system was composed of a detector
microphone, controller, and a secondary source. The
controller was designed by experimentally measuring open
loop transfer functions. A well —vecognized problem of

active noise <controllers is that the acoustic interaction
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between the canceling source and the detector microphone
can cause instability of the control system. To alleviate
the acoustic feedback problem between the secondary source
and the detector microphone, Nelson and Trinder placed the
detector microphone in the near field of the secondary
source at a position of minimum near-field vresponse. The
position of minimum near-field response was determined by
an iterative experimental procedure. The first three modes
of the duct were attenuated up to a maximum of 20 dB. The

control system was band limited to 400 Hz and below.

Researcher C.F. Ross experimentally investigated the
cancellation of plane waves in a duct [13]. The active
noise control system used by Ross was similar to that of
Trinder and Nelson. A duct 10m long and having a 50cm
square cross section was driven by a loudspeaker with
random noise 4input at one end of the duct. The duct was
open at the other end. The incident plane waves were
detected by a three microphone array. The three microphone
arvay provided the ability to detect only forward traveling
waves thus eliminating the acoustic feedback problem. The
secondary source was a loudspeaker built into a wall of the
duct at a location downstream of the detector array. An
observer microphone, positioned downstream of the gsecondary
source, was used to evaluate performance. The controller

transfer function was designed in the frequency domain with
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the objective of ~canceling all sound past the secondary
source. The controller was a digital filter whose
coefficients were determined by the least squares method of
system identification. Ross” system provided approximately
15-20 dB of attenuation over the frequency vange 60-300 Hz

with peaks as high as 35 dB.

In a landmark paper, M.A. Swinbanks analyzed the very
complex and general problem of active noise control in a
long duct with uniform flow [l4]. Swinbanks was interested
in finding a localized distribution of point sourtces
located about the . duct wall such that plane wave
disturbances propagating downstream in the flow would be
attenuated. Swinbanks” approach to the problem was an in-
depth fluid dynamics analysis from which he arrived at
several conclusions. An array of two sepatrated sourvce
"rings" would generate plane waves in one direction only.
The unidirectional property of such an acray was deemed
beneficial in avoiding the instability problem. Swinbanks
states that for a circular duct, three sources should Dbe
used in each source ting, while for a rectangular duct four
sources are needed petr ving. Likewise, a wunidirectional
detector array can be formed by two vrings of microphones.
Swinbanks also notes that the effect of cross modes at the
detector can be eliminated if such a directional sensor is

used. The useful frequency range for the two-ring source
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1
array was calculated to be 23 octaves. It was also found
that by adding a third ring of souvrces to the canceling

array, the useful frequency range increased by two octaves.

In a later paper, Swinbanks discusses many general
aspects of active noise and vibration control and reviews
some current applications [15]. One particular aspect
discussed by Swinbanks is the stability of a general active
noise controller. The configuration Swinbanks discussed
was originally proposed by Wanke [16]. Wanke proposed that
the cancelingi soutrce/detector interaction could be
electronically subtracted out of the detector output. The
transfer function between the <canceling source and the
detector would be measured a priori and electronically
implemented as a filter. The input to the canceling source
would be the input to the filter. The output of the filter
is subtracted from the detector output. Thus, the input to
the controller would contain only the noise source
component of the response at the .detector. The obvious
disadvantage to Wanke“s approach is that the system will go

unstable if the canceling source/detector transfer function

ever changed.

Researchers T. Enokida et al. [17] and M. Takahashi et

al, [18) have proposed an active noise control system for
one-dimensional ducts called the dual sensing microphone

(DSM) system. The DSM system is a method for eliminating
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the acoustic feedback between the canceling source and the
detector microphone. Two microphones atre positioned
equidistant from the secondatry source. One microphone 1is
located wupstream from the canceling source while the other
is located downstream. The acoustic feedback component of
the total signal 4is eliminated by subtracting the output
signal of one microphone from the other. Hence, the
controller input 1is the difference of the two microphone
signals. The DSM system was demonstrated wusing a duct
0.35m x 0.35m x 13m. The duct was driven at one end by a
loudspeaker with 20-1000 Hz white noise input. Attenuation
levels of 15 dB or more were achieved over a frequency

range of 70-700 Hz.

A system similar to the DSM system is the "Chelsea
dipole" developed by H.G. Leventhall and Kh. Eghtesadi
[19,20]. The Chelsea dipole system uses two canceling
sources a distance d apart. The detector microphone is
positioned centrally between the ¢two canceling sources.
The two canceling sources are driven 180° out-of-phase.
Thus, the components of the acoustic vtesponse at the
microphone location due to each source cancel, and
theoretically no acoustic feedback will occur. The Chelsea

dipole is "tuned" to a central operating frequency, fo X

o
A
by choosing d-72° Experimental analysis of the Chelsea

dipole showed a significant level of attenuation
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(approximately 25 dB) was possible around the central
operating frequency, but only about 10 dB of attenuation on
average was achieved at frequencies away from fo. Nonideal
factors such as cross modes and Jrregular frequency
response of the speakers were found to degrade the

performance of the Chelsea dipole.

In addition to the Chelsea dipole system, researchers
W.K.W. Hong, Kh. Eghtesadi, and H.G. Leventhall have
theoretically and experimentally investigated the
performance of tightly-coupled active noise control systems
[21]. Most duct noise attenuator systems have the feedback
(detector) microphone and the canceling source separated by
a relatively large distance. Hong et al. have proposed two
systems, a tight-coupled monopole (TCM) and a tight-coupled
tandem (TCT), where the feedback microphone(s) is located
in the near field of the canceling source(s). The TCT is
two TCMs in series. The idea of tightly-coupled systems
can be traced back to Olson [3]. As was the case for the
Chelsea dipole, cross modes and nonideal system components
caused a decrease in performance of the tightly-coupled
systems. In otrdetr to reduce the effects of higher order
(cross) modes, Hong et al. placed an absorptive lining

opposite the canceling source(s).

The TCM was originally known as the Chelsea monopole

[22,23]. Hong et al. modeled the transfer functions of the
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canceling source/detector interaction and controller for
the classic monopole attenuator (Figutre 2.1) as simple time
delays. The Chelsea monopole had two distinctive features.
First, the canceling source/detector intevraction was
electronically subtracted out of the detector output (as
proposed by Wanke). Second, the detector microphone was
located in very close proximity to the <canceling source.
Because the detector was very close to the canceling
source, the time delays were assumed to be zero, and thus,
the transfer functions werte simply unity gains.
Consequently, the overall controller transfer function
(including the subtraction of the source/detector
interaction) approached infinity, which Hong et al. noted
was equivalent in practice to a high gain amplifier.
Hence, the TCM is simply a microphone, a power amplifier,

and a canceling source.

Expressions for the attenuation at a field point
downstream of the canceling source were analytically
derived for the TCM and the TCT systems. The 4incident
noise in a duct (of trectangulartr cross section) was assumed
to be low enough in frequency that plane wave behavior
could be assumed. However, since the feedback microphone
was in the canceling source near field, plane wave behavior
could not be assumed in calculations involving the pressure

at the feedback microphone. To calculate the contribution
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of the pressure at the feedback microphone due to the
canceling source(s), Green”s function for rvadiation in a
finite space with rveflection coefficients was used. For
the absorptive 1lining, the rveflection <coefficient was

included for a locally rveacting material.

Experimental verification of the analytical results
was performed at discrete frequencies of 98 Hz, 155 Hz, and
216 Hz by Hong et al. The duct had dimensions 0.45m x 0.6m
x 10m. The quantity examined for verification purposes was
the level of attenuation over a plane (perpendicular to the
axis of the duct). The experimental results supported the
analytical tresults in general. The performance of the TCT
and TCM for broadband random noise band limited from 0-500
Hz was determined. The TCT provided slightly better

performance with a 20 dB minimum attenuation level over

three and one-half octave bands from 30-330 Hz.

The applicability of superposition for active noise
control systems has been debated among certain researchers.
J.E. Ffowcs Williams et al. [24] argue that the impedance
that the control source encounters changes when the noise
sources are present. Thus, if an optimal active noise
controller transfer function is in part found by
experimentally measutring various system transfer functions
with the noise source inactive, the controller transfer

function will suboptimal when the noise source is
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operating. However, M.A. Swinbanks considers Ffowcs
Williams” argument to be false [15]. Swinbanks argues that
the experimentally measured transfer functions are
invariant functions regavrdless if a noise source is present
otr not. Swinbanks states that the change in impedance that
the canceling source encounters when the noise source is
operating is accounted for by the ratio of the cancellation
point/noise source and detector/noise source transfer
functions. R.J. Silcox and S.J. Elliott support Swinbanks”
argument by analytically illustrating that for finite
impedance sources, the principle of superposition 1is

applicable for the active noise control problem [25].

Researcher R.D. Ford has analytically investigated the
povwer trequirements for one-dimensional active noise control
systems [26,27]. Ford considevred two active noise control
system arvangements. The first system employed a single
ring of canceling sources which were driven such that the
acoustic ptessure was zero downstream of the ring.
Upstream of the canceling sources a standing was formed.
Because the acoustic pressure neatr the rving of canceling
sources was zero, no power could flow into or out of the
canceling sources. However, the <canceling sources did
internally absorb power electrically and mechanically.
Ford hypothesises two explanations on the mechanisms at

work: (1) the canceling sources inhibit the noise source
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from radiating power because the radiation impedance of the
primary source had become totally reactive, or (2) the
noise source power is dissipated in the section of the duct

between the noise source and the canceling sources.

Ford also considered a system with a wunidirectional
dipole absorber. A unidirectional dipole is created by
situating two rings of canceling sources a distance d apart
(Swinbanks” proposed system). The upstream ring (ring 2)
is driven with the same amplitude as the downstream ring
(ring 1) but with the signal inverted and delayed by d/c
where ¢ is the speed of soungd. For the wunidirectional
dipole, the noise field upstream of ving 2 is unaffected, a
standing wave is formed between the two canceling rings,
and the pressure is zero downstream of rving l. Ring 2 was
found to absorb power while ring 1 had zetro power flow.
Hence, 1t is possible to remove power from the system if a
unidirectional dipole is used as the canceling source.
Ford performed several experiments where the acoustic power
input of the canceling source(s) was monjitored. The

experimental results reinforced the theory.

2.2.2 Two And Three-Dimensional Enclosures

A significant body of research of relevance to the
tesearch presented in this thesis has been conducted by

A.J. Bullmore, S.J. Elliott, P.A. Nelson, and A.R.D. Curtis
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[28,29,30]. Bullmore et al. have investigated the active
control of harmonic enclosed sound fields. Because
pressure is the acoustic parameter sensed by humans, the
selected control objective was to minimize the total time
averaged acoustic potential energy, Ep. For an enclosure

of volume V, Ep is given by

5 | lp(x,w)|? av (2.1)
4p c¢” v
o
whetre p(X,w) is the time harmonic acoustic pressure at a
location described by %X. The quantity p(;,w) is written as
a truncated sum of the mnormalized characteristic modal

functions of the enclosure and the complex mode amplitudes.

The complex mode amplitudes were written as a sum of

two componentse. The first component was the contributioh
of some unspecified noise (primary) source distribution.
The second component was the contribution of a set of point
canceling (secondary) sources which were employed to
control the noise field. Due to the orthogonal properties
of the mode shapes, when the solution for p(x,w) is
substituted into equation 2.1, an expression for EP results
which is a positive definite, quadratic function of the
complex secondary source strengths. A positive definite
quadratic function has a single wunique global minimum.

Thus, there exists a unique combination of secondary source
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magnitudes and phasing such that Ep is minimized.

Because minimization of Ep tequires exact knowledge of
the pressure distributions due to the primary and secondarvy
sources, Bullmore et al. have proposed a more practical
control objective. The practical control objective they

have proposed is to minimize the sum of the pressure

magnitudes squared at a discrete number (N) of sensor

locations:

J == L |p (2.2)

P époc N n=1

Minimization of Jp does not guarantee minimization of Ep.
In fact, Bullmore et al. point out that that Ep may even
increase at minimum Jp. As N approaches infinity,

minimization of Jp converges to minimization of Ep.

Bullmore et al. performed computer simulations for a
two~dimensional harmonically enclosed sound field [28]. A
lightly damped rectangular cavity was excited by a single
harmonic primary point source operating at low frequency
(50-300 Hz). The primary source was modeled as a small
tectangular piston mounted in the enclosure surface. The
secondary sources (at various locations in the cavity) were

likewise modeled as small rectangular pistons mounted in

the enclosure surface.



26

Several important conclusions can be drawn from the
computer simulations of Bullmore et al. First, the largest
rteductions in Ep were attained when the secondary source
was iIin «close proximity to the primary source. Second,
appreciable reductions in Ep are possible even if the
secondary soutrces are vemote from the primary source
provided that the secondary sources were located at maxima
of the wuncontrolled sound field. Third, for remotely
located secondary sources, fhe significant veductions in Ep
occurt around the acoustic resonances of the cavity.
Fourth, minimization of Jp was apprtoximately equivalent to
minimization of E as long as the sensor locations were

P
chosen such that all of the dominant modes were detected.

The computer simulation findings of Bullmore et al.

were verified experimentally [29]. The experiments were
conducted using a shallow rectangular enclosure identical

to that modeled in the <computer simulations. The
experimental vresults were in close agreement with the

simulation predictions.

A.J. Bullmore, P.A. Nelson, and S.J. Elljott have also

applied their formulation to the study of harmonically

excited <cylindrical enclosed sound fields [31]. A
cylindrical enclosure is of intercest because it
approximates an afircraft passenger cabin. A computer

simulation was performed for a thin, closed cylindrical
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shell excited by two harmonic external point forces of
equal magnitude and phase. The secondatry sources were
modeled as small piston sources on the cylindrical surface.
The acoustic rtesponse (noise field) of the cavity was
assumed to be due only to the structural response of the
cylindrical shell. The quantities Ep and Jp as defined in
equations 2.1 and 2.2 rtrespectively, were used as the cost
functions. At a driving frequency of 132 Hz, 10 secondary
sources provided 5.7 dB of reduction in Ep. For a similar
discretized study using the same 10 secondary sources and
24 gensot locations, Jp was reduced by 4.3 dB. Performance
was found to degrade with decreasing numbers of secondary
sources. Bullmore et al. suggested that maximum
minimization of Ep is achieved by placing the secondary
sources where they can most effectively couple into the

dominant modes excited by the primary sources while least

exciting previously unexcited modes.

The active control of harmonic noise fields inside an
aircraft fuselage has also been studied by H.C. Lester and
C.R. Fuller [32)]. The aircraft fuselage was modeled as an
infinitely 1long, uniform, thin, flexible cylinder. A pair
of dipoles of known amplitude, phase, and placement
external to the cylinder were used to simulate the sound

field created by twin propellers. The dipoles drove the

interior acoustic pressure field through
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structuvral/acoustic coupling. Monopole canceling sources
were introduced into the interior for noise field control.
A "payoff function", defined as the area weighted wmean

square pressure over the propeller plane, was computed from

, @ 2n 9
A(Pa) - | | |p(r,8)|° vdrads (2.3)
o

o
[«

where Ao is the cross sectional area at the propeller plane
and a is the vradius. The amplitudes of the control sources
(Pa’s) were solved such that the payoff function is
minimized. Coupled shell/acoustic equations were used to
solve for the acoustic pressures at the propeller plane in
terms of the control source amplitudes. The resulting
payoff function was a positive definite quadratic function

of the control source amplitudes, and thus, a single global

minimum was found.

Through computer simulations, Lester and Fuller were
able to arrive as some interesting conclusions. Using only
a few (2 to 8) "judiciously placed" controllable compact
sources, rteductions of 20-25 dB wevre attained over a
substantial portion of the cylinder”s cross section. When
modal density was low, the canceling sources were able to
create an acoustic modal pattern similar to the
uncontrolled acoustic field but opposite in phase. Lester
and Fuller thus concluded that the control soutrces should

be 1located such that they are effective in creating the
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anti-phase mwmodal pattern which is responsible for

attenuating the noise.

Some basic experiments on the active control of noise
in enclosures were carried out by Warnaka et al. [33].
First, noise attenuation in an anechoic environment at 500
Hz was investigated. A noise source (waveguide) and a
canceling source (waveguide) were positioned next to each
other 3in one wall with openings into the anechoic room.
The magnitude and phase of the canceling source was
manually adjusted such that mwmaximum attenuation was
achieved. A maximum of 70 .dB of reduction in sound
pressure 1level was achieved 1locally with 20 dB or more
reduction over approximately 80%Z of the 25cm x 76cm area in
front of the waveguides. Second, for a fuselage model
178cm long and 36cm in diameter with near vigid
terminations at the ends, 20 to 35 dB of reduction was
achieved everywhere within the model. The model was

sinusoidally excited at 400 Hz. Similar results were

obtained for an excitation frequency of 190 Hz.

Research by L.J. Oswald on the attenuation of diesel
engine noise inside passenger compartments using an active
noise control scheme has shown several interesting results
[34]. Actual engine noise was experimentally attenuated in
a medium-duty truck cab up to a maximum of 30 dB at the

drvivers head 1location. One speaker located at the front
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lower corner of the cab was used as the canceling source.
The maximum level of noise reduction occurred at the
natural frequencies of the cab. It was also found that
minimum energy for cancellation of an acoustic mode is
required if the canceling source was located at an antinode
of the mode. Work by Oswald also showed that the size of

attenuated vregion will be at least one-quarter wavelength

for frequencies up to 200 Hz.

Researcher T.S. Berge also experimentally investigated
the possibility of reducing low frequency (below 200 Hz)
noise in a vehicle cab [35). Berge“s goal was to actively
attenuate the high noise level of the fundamental engine
firing frequency at idle speed (30 Hz). An open loop
filter between a feedback microphone and a cancellation
speaker was adjusted such that the sound pressure level was
minimized at the driver”’s head location. The canceling
source was mounted directly behind the driver”s head
location. The sound pressure level at ;he fundamental
firing frequency was rveduced by 15.7 dB. However,
broadband cancellation ‘was not achieved, and the sound

pressure level actually increased at other frequencies when

the active noise controller was functioning.

In work similar to that of Oswald and Berge, M. Nadim

and R.A. Smith addressed the problem of providing a spatial

zone of attenuation about the driver“s head location in a
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tractor cab [36). Two high efficiency ported loudspeakers
were remotely placed in the foot-rest of a tractor cabin.
A feedback microphone was located just above the operator”s
head height. Loudspeakers external to the cab were used to
simulate exhaust noise. Significant reduction in the sound
pressure level occurred at the cab resonances and at very

low frequencies. A typical value was 26 dB at 50 Hz.

2.3 Active Noise Control In Free Space

Researchers P.A. Nelson, A.R.D. Curtis, and S.J.
Elliott have investigated the active attenuation of sound
in an unbounded medium [30)]. The objective of their work
was to minimize the total sound power, w, vradiated from a
system composed of harmonically time varying point monopole
sources. Tﬁe total sound power output of the system was
formulated in terms of the primary (noise) and secondary
(canceling) source strengths. The expression for w was
found to be a positive definite, quadratic function of the
complex secondatry source strengths. Hence, for multiple
secondary sources, the total sound power function 1is a
quadratiec hypetrsurface having a single unique global
minimum. It follows that there exists a unique combination
of secondary source magnitudes and phasing which minimizes

We
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After formulating the problem, Nelson et al.
performed an analytical study of the performance of active
noise control of a single point primary source. Twelve
secondatry sources were placed in an icosahedral array about
the primary source. The solution for the complex secondary
source strengths which minimized w vrequired that all
secondary sources be either 180° out-of-phase or in-phase
with the primary souvrce. Appreciable reductions in w were
found to be possible only if the secondary sources were no
greater than one-half a wavelength away from the primary
source. Significant improvements in the vteduction of w
occurred with an 4increasing number of secondary sources

within the one-half wavelength criterion.

Nelson et al. also considered the more general case of
sound power absorption of incident plane waves wusing
compact secondary souvces [37]. Expressions for the
secondary source strengths which minimized w were derived
for monopole, dipole and longitudinal quadrapole canceling
sources. The technique used in the development of the
source power equations was developed by Levine {38)]. For a
simple monopole secondary source, it was found that the
secondatry source absorbs power and that its volume velocity
must be in anti-phase to the incident plane pressure wave.

The maximum power absorbed for a dipole and a longitudinal
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quadrapole were three times and five times that for the

monopole, tespectively.

G.A. Mangiante and M.J.M. Jessel have developed a
theoretical technique for examining the cancellation of
sound in free space [39,40,41]. The technique is an
application of Huygen“s principle. The technique 1is
formulated for a noise source group which rvadiates into
free space. A surface, Zo’ is constructed which completely
encloses the noise source group and consequently divides
free space into subspace Vl, inside Zo' and subspace Vz,
outside Zo. Huygen”s principle states that it is possible
to distribute a set qf (Huygen) sources over Zo such that
there will be no vradiation into V1 and no change 1in the
sound field in Vz. If the Huygen sources arvre phase
inverted and operate in conjunction with the original noise
source group, then the sound field in V1 will be unchanged
and the sound field will be zero in V2. Thus, Mangiante
and Jessel proposed that in theory it s possible to
completely cancel a vradiated noise field (outside of Zo) by

enclosing the noise sources with a surface of phase

inverted Huygen sources (absorbing sources).

Several practical conclusions were drvawn by Jessel and

Mangiante from computers studies they conducted. In
prtactice, only a discrete number of absorbing sources can

be used. The discrete absorbing sources must have cardioid
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radiation patterns with the direction of radiation pointing
into the cancellation region. Attenuation was found to
increase with the number of absorbing sources employed.
The absorbing sources should be located close to the noise
source for improved petformance. Active absorption

performs well for frequencies below 1000 Hz.

Researcher O.L. Angevine evaluated an experimental
implementation of Mangiante and Jessel”s theory [42].
Angevine was interested in actively attenuating the hum of
an electric transformer. A transformer casing was excited
by a loudspeaker within the casing. The 1loudspeaker was
opevated at frequencies of 125 Hz, 250 Hz, and 500 Hz. The
required cardioid radiation pattern was obtained by wusing
"tripoles." A tripole was defined as a monopole and dipole
operating in close proximity. The amplitude and phase of
each tripole was adjusted by an automatic control system
such that the pressure at a microphone 1location O.5m in
front of the tripole was wminimized. Using 26 tripoles
surrounding the transformer casing, attenuation at the
microphone locations averaged 16 dB at 125 Hz and 8 dB at
250 Hz. Attenuation was found to increase approximately

linearly with increasing number of tripoles.

Another application of the free space tadiation
problem is the active attenuation of vehicle exhaust noise

which has been experimentally investigated by M.C.J.
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Trinder, G.B.B. Chaplin, and P.M. Nelson [43]. Two
canceling speakers with single ports were mounted near an
exhaust outlet. An adaptive control system was used which
adapted to achieve a minimum sound pressure 1level at a
microphone 1location near the exhaust outlet. A frequency
vange of 0-500 Hz was considered. On a dynamometer test
bed, the relative sound pressure 1level at the dominant
harmonic of 50 Hz was attenuated by more than 25 dB.
Although the broadband performance of the system was
satisfactory overall, the sound pressure level did increase
slightly at some frequencies., The results were less
encouraging for an on-road test which was conducted. The
relative sound pressure level at the dominant peak (63 Hz)
was reduced by approximately 8 dB. The overall reduction

(0-500 Hz) was 6 dB.

2.4 Conclusions

Several important conclusions can be drawn from the
literature summarized in this chapter. Numevrous articles
were cited where active noise control systems were
experimentally shown to provide significant (15 dB or more)
attenuation for a variety of practical applications such as
aivr conditioning/heating ducts, exhaust noise, electronic
transformer hum, and passenger cabin noise. The control of
noise fields in either an enclosure otr free space is

possible using a small number of compact controllable
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sources. For enclosed noise fields, active noise control
is most beneficial at the natural frequencies of the
enclosure. For free space active noise control, the
canceling sources should be 1located within one-half
wavelength of the primary source. In genevral, because
passive noise control methods are efficient at the higher
frequencies, active noise control is limited to the low
frequency range (below 500 Hz). Moreover, as the frequency
of the noise increases, computationally quicker controllers

are needed to operate at the requivred sampling rate.

From the research of Bullmore et al. and Lester et
al., a reasonable control objective for enclosed noise
fields is the minimization of the mean squared pressures at
a number of discrete sensor locations. If a control
objective of a form similar to Bullmore et al. or Lester et

al. 1is wused, the control objective equation is a positive

definite, quadratic function of the —canceling source
strengths. Therefore, there 1is a unique combination of
secondary source strengths which provide a global

minimization of the control objective function.

Stability of active noise control systems is a well
recognized problem. Instability is caused by the positive
(acoustic) feedback between the canceling source(s) and the
detector microphone(s). For one-dimensional systems,

stability is usually attained by using either directional
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sensors or directional canceling sources. For higher
dimensional systems, directional sources or sensors are
less straightforward and other methods must be used to

ensure stability.

The analytical/numerical procedures for higher
dimensional systems presented in this chapter were not
generalized methods. The methods of Bullmore et al. and
Lester et al. are limited to regularly shaped enclosures
where the characteristic modal functions are known. All of
the analysis for the one-dimensional system were specific
to a particular system or configuration. Because some
desired active noise control applications involve complex
cavities (such as an automobile and aiccraft cabins), a

generalized method for evaluating an optimal active noise

control scheme is needed.

In addition, critical issues such as the influence of

" damping, asymmetric source distributions, and attenuation

of noise near irregularly shaped distributed sources
require more capable analysis procedures in order to
evaluate active noise controller performance. However, it
is characteristic of numerical techniques that the physics
of the modeled behavior are less obvious. The analytical
studies cited in this chapter will be wused to help

understand and explain the results found in the numerical

studies.




CHAPTER 3

THE INDIRECT BOUNDARY ELEMENT METHOD

As will be seen in chapters 4, 5, and 6, derivation of
optimal active noise controllers require a predictive
scheme to calculate acoustic quantities, mnamely pressure,
in a domain of interest. The domain of interest could be,
for example, the interior of a <cavity or the space
surrounding a rvadiating machine. For simple geometries
possessing one-dimensional plane wave acoustic behavior, it
is possible to derive an optimal controller solution
[9,13,14,21]. However, to calculate the optimal controller
for systems with generalized geometries possessing three-
dimensional acoustic behavior, a numerical predictive
scheme is necessary. Multiple parameter optimization and
multi-input, multi-output controller optimization can be
performed with 1little difficulty if a numerical analysis
method is employed. Hence, for reasons of generality and

versatility, a numerical predictive scheme was used.

For calculation of the acoustical quantities, the

indirect boundary element method (IBEM) was chosen for its
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versatility, relative computational simplicity, and
efficiency. Two other numerical methods could possibly
have been employed: a direct boundary element method (DBEM)
or a finite element method (FEM). The DBEM formulation
results in a matrix equation involving two matrices. The
IBEM formulation results in a matrix equation involving
only one matrix. Thus, the IBEM requires about half the
number of calculations to form the needed matrix equation.
The FEM requires that the complete problem domain be
discretized. The IBEM (and DBEM) require that only the
domain boundary be discretized. Thus, the geometric models
of the problem are much larger for the FEM. Moréover, the
FEM provides the solution at every node 3in the geometric
model of the system whereas the IBEM provides the solution
only at a chosen set of locations in the domain. For the
problem presented in this thesis, the solution is usually
desired at only a few locations. Therefore, use of the FEM

would provide unneeded information.

Furthermore, the basis functions wused in FEMs are
usually polynomials whereas the boundary element methods
use the fundamental solution for a source in free space.
The fundamental solutions for the boundary element methods
are obtained from the governing partial differential
equation of the ©particular problem at hand. Because the

fundamental solutions are specific to the problem, the IBEM




40

and the DBEM provide a more accurate solution with greater

efficiency than the FEM.

The formulation of the IBEM presented in the next two
sections is brief and customized. A more thorough and
general development of the IBEM can be found in Banerjee
and Butterfield [44], Brebbia and Walker [45], and Kipp

[46].

3.1 Theory

The acoustic system to be wmodeled by the IBEM is
illustrated in Figure 3.1. The system consists of a

domain, D, enclosed by a boundary, B. The 1location of a

point on the boundary is given by vector b. The method can
also model systems with acoustic point sources present. An

acoustic point source of strength ¢ is located by vector

is described by vector X, A

X « A domain location, x d

s a’

unit vector normal to the boundary is represented by n.

-~

Figure 3.1 represents analysis of a problem where the
domain 1is enclosed by the boundary. The IBEM can also
provide solutions for problems where the domain is external
to the boundary. For external domain analysis the

divrection of n is reversed from that shown in Figure 3.1,

j.e., the normal vector always points into the domain.

The IBEM is a numerical approximation of Huygen’s

principle. Huygen”s principle states that if the boundary
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of the domain is replaced by a distribution of fictitious

sources such

that the <conditions at the ©boundary are

reproduced, then the conditions in the domain are likewise

reproduced.

formulation

corresponding

known. The

It follows that the Huygen”s principle
tequires that the boundary conditions
to a well posed boundary value problem be

boundary conditions formulated in this

investigation are acoustic pressure, particle velocity, and

specific acoustic impedance. Calculation of quantities in

the problem domain using the IBEM is essentially a two step

process. First, the fictitious source distribution is

solved such
boundary as
Second, the

domain or on

that it reproduces the conditions at the
specified by the boundary value problem.
quantities of interest at locations in the

the boundary are found from the fictitious

source distribution. In this work, the quantity of

interest in the domain is the acoustic pressure.

Because
fictitious
conditions,

conditions

the first step in the IBEM is to solve for the
source distribution given the boundary
expressions relating the known boundary

to the fictitious soutrce distribution are

needed. The acoustic pressure at a point on the boundary,

EI’ due to the fictitious source distribution is given by

p(b)= [ o(®)p"(b,b)) dB (3.1)
B
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where 6(35 is the fictitious source distribution along the
boundary and p*(;,gl) is the fundamental pressure solution.
The fundamental pressure solution is an influence function
which relates the effect of a unit point source at b to the
pressure at b_. The fundamental pressure solution for this

formulation is the free space Green”s function:

%

P (3,T)= 2 e TIKT (3.2)

where

r= lbI - b (3.3)

The quantity k in equation 3.2 is the wavenumber and
j= \l-l. Other fundamental solutions <could be wused
depending on the physical problemn. For example, 1if an

infinite veflecting plane is present in the problem, image

sources would be included in the fundamental solution [47].

Similarly, the velocity normal to the boundary at bI
due to the fictitious source distribution is given by

u(b)= [ o(®)u (5,5, ds (3.4)
B

*——
The quantity u (b,bI) is the fundamental velocity solution

which 4is an influence function of a unit point source at b

on the velocity at FI. The fundamental velocity solution
is obtained from the fundamental pressure solution by

Euler”s equation:
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)

*——
dp (b,bI , )
3.5

-~

* ) -1
1 jkpoc 3n

u (b,b

where p {is the equilibrium density of the air and ¢ is the
o

speed of sound. Equation 3.5 can be rewritten as

* - = -1 -o * — —
u (b,b )= T < n*Vp (b,b;) (3.6)
oT
o= (2" Ve) 1 . jk, _-jkrt
u (b,by) T e (r2 + 1) e (3.7)

The pressure and velocity of a point on the ©boundary
are also influenced by the acoustical point sources present
in the domain of the problemn. The effect of a point

source(s) of strength ¢ located at ;s on the pressure at bI
is
ns _

* —
T ¢,p (x ,b.) (3.8)
k=1 k s,k’"1

- —- % — —
p(b )= [ o(b)p (b,b,) dB +

I B . I
where ns is the number of point sources present. Likewise,

the contribution of the point source(s) on the velocity at

FI is

ns
—_ —_ * — — * — —
u(b )= o(b)u (b,b ) dB + T ¢ u (x_ ,,b. ) (3.9)
1 1 k s,k’"1
B k=1
The integrands in equations 3.8 and 3.9 contain a

singularity. The singularity occurs in the fundamental
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solutions when t=0 or b= 1 The fundamental pressure

o

solution has a % singularity which can be eliminated by
evaluating the boundary integral using a polar coordinate
system. The polar coovrdinate system transformation will be
discussed in more detail in section 3.2. The fundamental

1
velocity solution has a - singularity which is strong and
t

must be treated as a Cauchy principal wvalue [48]. The
procedure 1is to exclude a small vregion about the point of
singulavrity in the boundary integral. The boundary
integral over the small rtregion 1is accounted for by the

addition of a "free term." Thus, equation 3.9 becomes

u(b.)= =2 ¢ o(5.) + | o(B)u (B,b,) dB
1’7 Yk e “p7°01 _ P11
B
ns . — _
+ k§1¢“u (xg 20y) (3.10)

where B is the boundary excluding the small region about

the singularity point. For a singularity located on a
1

smooth part of the boundary cy= T7° If the singularity 1is

located at a corner of the boundary, then cb- -Z; where Q

is the solid angle (in steradians) of the domain

encompassed by the boundary corner [49].

Impedance boundavry conditions may also be modeled with
the TIBEM. Assuming a 1locally reacting boundary, the

specific acoustic impedance at ;I is given by
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p(B.)
1 (3.11)

z(b, )=
1 u(B,)

Rearvanging equation 3.11 results in an alternate form:
b.) - 2(b )u(b_ ) = 0O 3.12
p( I) ( I) ( I) ( )

Substitution of the boundary integrals into equation 3.12

yields

[ a(®)p"(®,5) dB - 2(b)f o(B)u (5,5,) 4B~

B B
ns . — _ _ . — _
+ kil ¢k[p (xs,k’bI) - z(bI)u (xs,k’bI)]
- jkznc z(fl)cbc(fl) = 0 (3.13)
o

Equations 3.8, 3.10, and 3.13 ave the necessary
equations to solve for the fictitious source distribution
along the boundary of the domain of interest. Equation 3.8
is used if ©pressure boundary conditions are known at EI'
1f velocity boundary conditions are given at gI’ then
equation 3.10 is evaluated. Likewise, equation 3.13 is

evaluated if locally vreacting impedance boundary conditions

are specified at SI.

Once the fictitious source distribution is calculated,
the acoustic pressure or particle velocity at locations in
the domain or at the boundary can be found. The pressure

at ;d is given by



46

_ — ko= - ns . — _
p(xd)= £ o(b)p (b,xd) dB + k§1¢kp (XS,k’xd) (3.14)

The component of the velocity in the direction of the wunit

-~

vector v at x, is

d
- _ k- - ns Xk — -
u(xd)= £ o(b)u (b,xd) dB + kzl¢ku (xs,k’xd) (3.15)

where

-~ % —
v'Vp (vs,v

W (VL) ) (3.16)

d

- -1
d jkpoc

and v and vd are vectors locating a source and a domain
s

location vtespectively. Provided that ;d is not located on
the boundary, the boundary integrals of equations 3.14 and
3.15 do not contain a singularity. If ;d is located on fhe
boundary, the —resulting singularity 1is evaluated with

fundamentally the same procedure that was used for the

fictitious source solution. When ;d is on the boundary,

equation 3.15 becomes

u(x,)= jk—’”‘—c e o(x,) + j_ a(%)u*(‘b‘,;d) B~

P,c P 5
ns . — _
« 17
+ kil¢ku (xs,k’xd) (3.17)

where cb=0 if the domain is exterior to the boundary, or
cb=-l if the domain 1is enclosed by the boundary. The
singularity present in equation 3.14 when ;d is located on

the boundary can be rtemoved by a conversion to polar
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coordinates as will be shown in the next section.

3.2 Numerical Implementation

The IBEM evaluates the boundary integrals developed in
the proceeding section on a piecewise basis. The boundary
is discretized into a number of sections referred to as
boundary elements. The boundary 1integral equations are
evaluated over each element and summed together for the

complete boundary solution.

A noncompatible, triangular, 1linear, superparametric
element is wused in this investigation to discretize the
boundary. A superparametric element uses a higher order
interpolation for the geometric mapping than the functional
mapping. Noncompatible elements do not requitre that the
parametric elemental properties be continuous across the
elements. Anticipating the need for models with a large
number of elements, a computationally simple element was
chosen so that res#lts could be obtained with reasonable
computer capacity and time. Consequently, an element with
.linear geometric characteristics and constant functional
chavracteristics was chosen. Although such elements are
quite efficient, modeling errors occur when the boundary is

curved [50]. The modeling errors will be discussed in

section 3.3.
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An IBEM using compatible, quadratic isoparametric
elements was studied by Kipp [46] and found to provide
accurate results for curved surfaces. However, enforcing
compatibility of the elements caused poor results for
models which contained cormers or edges. Kipp suggested
that a noncompatible element be used to model geometries

with corners or edges.

Using the discretized boundary, equation 3.8 «can Dbe
rewritten as
_ ne _ . — —
p(b )= i / c(bj)p (bj’bl) dB,
j=1 Bj
ns

& -
+ I ¢kp (x
k=1

s,k’bI) (3.18)

where ne is the number of elements in the boundary element

t
model, and Bj is the boundary section contained by the jJ

element. Likewise, equation 3.10 can be written as

-— — [ — -
e o(by) + J o(b du (b_,b;) dB_
B

- 4br
u(bI)a jkPo

ne _
+ T [ a(b)u
j=1 B ]
j#s 3
ns . _
* k§1¢ku (xs,k’

* 0 |

(b bI) dB

i’ A

bI) (3.19)

where B; tepresents the boundary element enclosing the
singularity but excluding the small region around the

singularity. Because the elements used in this formulation
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are geometrically flat, the elemental boundary integral

over B; in equation 3.19 is evaluated over a flat surface.

-~

For a flat surface, the vectors n and Vr in the fundamental

velocity solution will always be perpendicular. Thus, the

fundamental velocity solution is zero over BS and

f °(;s)“*(§s’;1) dB_ = 0 (3.20)

B
s

By applying equation 3.20 and the boundary discretization

principle, equation 3.13 can be rewritten as

ne

- * — -—
 J o(b)p (b,,b.) dB
j=1 Bj j R § h|
- ne - % — _
- z(b}) jil £ o(bj)u (bj,bI) dBj
h|
j#s
ns X — - - * — —
+ kil ¢k[p (xs,k’bI) - z(bI)u (xs’k,bl)]
%4 - -
- jEF:Z z(bI)cbo(bI) = 0 (3.21)

The constant functional characteristic of the element
implies that the fictitious source distribution, the
pressure, and the velocity are constant over the element.
Thus, a given boundary condition is assumed representative
of the entire element. However, the IBEM requires for a
constant functional element that the boundary condition be
applied at a single point on the element. The 1location

where the boundary condition will be applied 1is the
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centroid of the element. Because the fictitious source
distribution is <constant over the element, O(gj) can be
removed from the elemental boundary integral. Applying the

boundary conditions at the <centroid of the element,

equation 3.18 becomes

ne
— * — —
p(By)= L o | »p (by,B;) dB,
j=1 B,
J
ns % — _
+ I dyp (xs’k,Bi) (3.22)
k=1
where Ei is the vector locating the <centroid of the ith
element, and aj is the fictitious source strength of the
jth element. The point located by EI is contained by the
t
i h element. Similarly, equation 3.19 becomes
- 47 ne Y
u(B, )= it e %1 * I ooy [ u (bj,Bi) dB
o j=1 B
j#1i i
ns % — _
+ I ¢ku (xs’k,Bi) (3.23)
k=1
and equation 3.21 becomes
ne _
I o (b,,B,) dB
- J f p j’ i j
j=1 B.
3
ne
—_ * - =
- 2(B,) £ o, f wu (b, B ) dB
i t=1 h| i 3
i= B,
j#i J
ns x — _
+ kil ¢k[p (xs’k,ai) - z(Bi)u (x ,k’Bi)]
A% o (B.)e.o, =0 (3.24)
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A system of ne equations for the ne unknown o6°s 1is
obtained by writing the appropriate equation for each
element. The system of equations can be compactly written

in matrix form as
[Al{o} + [Cl{¢} = {a} (3.25)

where {0} contains the values of the fictitious source
strengths and {¢} contains the point source strengths. If

element i has a pressure boundary condition, then

K o= e
Aij = £, P (bj,Bi) dBj s j#i (3.26a)
J [ J P —
Ay, = £ p (b,,B,) dB, (3.26b)
1
L Jppe— —-—
Cik = p (xs,k’Bi) (3.26¢)
a, = p(B,) (3.264)

If element i has a velocity boundary condition, then

P —
Aij = £. u (bj,Bi) dBj 5 j#i (3.27a)
j
47
A11 jkpoc <y (3.27b)
[ - —
Cik =y (x ,k’Bi) (3.27¢)
a, = u(fi) (3.274)

The matrix terms for impedance boundary conditions on

element i1 are

—_— - —_ * — -
Ay = £ P (b,,8,) - 2(B)u’(b;,B,) 4B, ; j*1(3.28a)
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* - -_— X —_—
Aii = .r P (bi’Bi) dBi jk—p__c Z(Bi)cb (3.28b)
B, R
*% ., - 2B e (. .8 3
Ciw = P (xg y»By) = 2(Bylu (xg \uBy) (3.28¢)
a, =0 (3.284)

Examining equations 3.25 through 3.28, one finds [A] has
dimensions ne x ne, [C] is ne x ns, {o} is of length ne,

{4} is of length ns, and {a} has a length of ne.

From equations 3.26, 3.27, and 3.28, it 1is apparent
that the diagonal of [A] contains the integrals of singular
functions. The integral of the singularity due to the
fundamental velocity solution has already been accounted .
for by the free term. The rvremaining boundary integral

containing a singularity is that of the fundamental

t
ptessure solution over the i element:
k - = -
[ p*(5..B,) aB, = [ L e7IkT 43 (3.29)
B i’i i B T i
i i
The quantity <t is the distance between the point of

integration, Fi, and the centroid of the element, Bi' The
1 term causing the singularity can be removed from the
elemental boundary integral by a conversion to polar
coordinates [51]. When the elemental boundary integral in
equation 3.29 is evaluated in a polar coordinate system,
dBi is replaced with vdrd® (the differential area in polar

coordinates). Furthermore, if the centroid of the element

coincides with the origin of the polar coordinate system,
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the r in equation 3.29 is identical to the r in the
differential area for polar coovrdinates, and equation 3.29

becomes

—3kT 4cd0 (3.30)

Figure 3.2 illustrates the concept presented above.

The double integral in equation 3.30 is evaluated by
dividing the element into three triangular sections as
shown in Figure 3.3. The point ¢ in Figure 3.3 1is the
centroid of the element, i.e., the origin of the polar
coordinate system. The double integral 1is evaluated for
each section and the —results are summed for the total

solution. For one section the double integral becomes

® R(9)

[ e 3% dede = [ [ e 3%T4cas (3.31)
6 r 0 O
Evaluating the inner integral yields
-jk © -jkR(0O)
jf e % drao = d [ (e - 1) do (3.32)
9 r 0

From trigonometric relationships it can be shown that

d.d
d3 sin®
R(O) = 3 (3.33)
sin[n - sin—l(zl sind®) - 8]
3

The integral in equation 3.32 can be evaluated wusing a
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numerical integration procedure. The numerical integration
procedure used to evaluate the integral over 6 in equation

3.32 is a 10-point Gauss-Legendre quadrature [52].

The off-diagonal terms of [A] are computed wusing
essentially a one point Gauss-Legendre quadrature to
approximate the elemental boundary integrals. The location
of the integration point is the centroid of the element and
the weighting factor is the element avrea. The integral of
the fundamental pressure solution over the jth element is

approximately

* - - x — =
b,,B,) dB, = B,,B,)A 3.34)
J
th
wherve Aj is the area of the j element. Similarly,
* — = *
/] u(b,,B,) dB, - u (B,,B_)A (3.35)
B. i’ J
J
Such an elementary approximation to the elemental boundary
integrals was chosen for computational simplicity. If the
fundamental solutions vary greatly over the elements,
equations 3.34 and 3.35 will be poor approximations of the
actual integral. As will be demonstrated in the next
section, the one point quadrature was found to be an

adequate approximation for most circumstances.

After the terms of [A], [C], and {a} have been

evaluated and assembled into matrix form, equation 3.25 is
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solved for the unknown ¢”s using a complex linear equation
solver. The routine used in this investigation is LEQTIC
avajilable from the International Mathematics and Statistics
Library (IMSL). LEQTIC solves a system of complex linear
equations of the form [A]{x} = {b} were {x} contains the

unknowns. Equation 3.25 can be put in appropriate form as

(Al{c} = {{a} - [Cl{¢}} (3.36)

After the fictitious source strength of each element
is known, equation 3.14 1is used to find the pressure at a

domain location. Using the boundary discretization

process, equation 3.14 becomes

ne

—_ R o~ -
plx )= jil F g p (bj,xd) dBj
]
ns . — _
+ T ¢, p (x y X ) (3.37)
k=1 k s,k’7d

If the values of pressure at a number of domain 1locations

is desired, a matrix equation can be derived of the form
{p} = [Dl{o} + [E]{¢} (3.38)

whetre {p} is a vector of length np and np is the number of

domain locationse. For the ith domain location

K- -—

Dij = {s. P (bj,xd’i) dBJ. (3.39a)
J *

Eik = p (xs,k’xd,i) (3.39b)
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As in equation 3.34, the elemental boundary integral of

equation 3.39a is evaluated using the one point quadrature

approximation:

1; P (bj,xd’i) ds, = p*(Ej,;d’i)AJ. (3.40)

th
where A, is the area of the ] element.

Implicit in equation 3.40 is the premise that ;d 1 is
’

not located on the boundary. If is located on the

*d,1

boundary, the technique used to evaluate equation 3.26b can

be used to evaluate D where the j° subscript denotes the

ij”
element number which contains the domain 1locatione. The
acoustic pressure is one of the physical variables which
was assumed to be constant over the element. Therefore,

evaluating the ptressurte at X1 is equivalent to
?

calculating the pressure at the centroid of the element

which contains x « The Dij' term then becomes
3
D [ »°(v,.,B,.) dB (3.41)
S RO N s M I .
J

Equation 3.41 is identical to equation 3.26b, and thus, the

technique used to evaluate equation 3.26b can be dirtectly

applied to equation 3.41.
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3.3 Verification

As previously mentioned, the physical quantity of
interest for the study of active noise controllers is the
acoustic pressure., Thus, acoustic pressure solutions were
examined for verification purposes. The IBEM was used to
solve several acoustical problems which have known
analytical solutions. A spherical and a rectangular prism
boundary geometry wetre used in the vevrification process.
Both the interior and exterior domains of the spherical
geometry were examined. Verification using the rectangular
prtism involved only intecrior domain studies. The results
presented in the next two sections are a representative
subset of the complete verification process. Results from
verification studies not presented are summarized where

appropriate.

All acoustical problems analyzed with the 1IBEM for
verification purposes are characterized by harmonically

time varying solutions:

Jjwt

p(x’Y’z)t)- p(xp}')z) e (3.42)

where w is the excitation frequency. The IBEM solves for
the steady state magnitude and relative phase of the time

hatrmonic solution, p(x,y,z). Thus, the time dependent

component of the solutions is not included in the analysis.
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3.3.1 Spherical Boundary Results

Analytical expressions for the acoustic response due
to spherically shaped geometries are easily derived and
well understood. For uniform boundary conditions over a
sphetrical surface (a spherically symmetrvic problem), both
the intetrior and exterior responses vary in only the radial

directione.

Two models of a spherical ©boundary were wused in
verifying the IBEM code. Both models approximated the
shape of a sphere, one metevr in radius, centered about the
orvigin., One model approximates the sphere wusing 48
elements while the other uses 96 elements. In both models
the nodes of the elements were located on the sphere
surface. Each model was constructed so that the centroids
of the elements were equidistant from the center of the

sphere and all the elements had equal artea.

The first problem analyzed was the interior sound
field created by a pulsating sphere. A pulsating sphere
has a uniform radial time harmonic surface velocity. The
analytical solution for the acoustic pressure inside a

pulsating sphere of vadius a is [53]

2
jkpoca Uo sin(kre)

p(r)= sin(ka) - ka cos(ka) T (3.43)

where U 1is the amplitude of the surface velocity. Note,
)
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the ©pressure at a particular vadial 1location Dbecomes

infinite whenever
sin(ka) - ka cos(ka) =0 (3.44)
or

tan(ka) = ka (3.45)

The transcendental equation 3.45 is nonlinear, and thus,
the rtoots of the equation, which are the natural
frequencies of the cavity, must be solved iteratively. The

first three natural frequencies occur at ka=0, ka=4.49, and

ka=7.72.

A comparison of the acoustic pressure as given by the
analytical solution and by the IBEM for a radial location
of % is presented in Figure 3.4. The surface velocity
amplitude was lm/s. Examination of Figure 3.4 reveals that
there is an apparent frequency shift of the IBEM solution.
This shift in frequency is caused by the geometric modeling
of the curtrved sphefical surface with flat elements. The
sphere was modeled by placing the nodes of the flat
elements on the sphere surface. Thus, the centroids of the
elements are within the spherical boundary being modeled,
and the boundary element model is circumscribed by the
sphere. The boundary conditions of the problem are applied

at the centroids of the elements, and the elemental



60

boundary integrals are calculated using the centroids as
the numerical integration point for the quadrature.
Consequently, the 96 element model resembles a sphere of
slightly smaller radius than the analytical model, and
thus, higher natural frequencies are predicted by the

indirect boundary element method.

When the analytical solution is recalculated using an
adjusted sphere radius corvesponding to the radial location
of the elemental centroids, the analytical solution and the
IBEM solution are nearly identical. Figure 3.5
demonstrates the result. The radial 1location of the
elemental centroids is r=0.,9437m. Figure 3.5 suggests'that
when modeling curved surfaces with flat, 1linear elements,
the model should be constructed such that the centroids of

the elements are located on the curved surfaces.

Accurate IBEM results at the pressure node at k=6.28
in Figure 3.5 furthetr demonstrates that the frequency shift
of the IBEM results is caused by geometric modeling errors.
The pressure node results from the sin(kr) term in equation
3.43. Because sin(kr) is independent of sphere radius,
geometric modeling ertors should not affect the accuracy of
the IBEM in predicting the pressure node. Figure 3.5 shows
that the IBEM solution is not shifted in frequency at the

pressure node.
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To further demonstrate the modeling effects of using
geometrically linear elements to model cuvrved surfaces, the
IBEM results for two models with different element wmesh
sizes are presented in Figure 3.6. The acoustic pressure

at'r-% for the interior of a pulsating sphere was computed
using a 48 element model and a 96 element model. The 96
element model is geometrically a «closer approximation to
the actual sphere than the 48 element model. Thus, the
IBEM results obtained with the 96 element model are
characterized by a less pronounced shift in frequency. For
curved surfaces, the IBEM results will converge to the
analytical solution as the number of elements increases
until a point where the element size becowes so small that

the elemental boundary integral approximation becomes

inaccurate.

The IBEM results for the prediction of the sound field
inside a pulsating sphere diverge from the analytical
solution in the very low frequency regime. This behavior
is demonstrated in Figure 3.7 using the 48 element model to
compute the pressure at half the sphere radius. Similar
behavior has been reported by Kipp [46] using an IBEM and
by Gardner [47] using a DBEM. As in this work, Gardner
uses a one point quadrature to approximate the elemental
boundary integrals. Gardner shows that the divergence is a

result of the one point quadrature approximation. Results
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for the low frequency rtegion improved with the wuse of
higher order Gauss-Legendre quadratures. However, as shown
in Figure 3.7, the IBEM results obtained with the one point
quadrature remain reasonably accurate for wavenumbers as
low as approximately k=0.7 which corresponds to a frequency
of 38 Hz. For frequencies much below 38 Hz, active noise
conttrollers perform poorly due to hardware 1limitations.
Consequently, IBEM analysis in the very 1low frequency
region is unnecessary for the study of active noise

controllers.

Prediction of the acoustic pressure in the field
exterior to a pulsating sphere was the next problem
analyzed with the IBEM. The analytical solution for the

exterior sound field created by a pulsating sphere is [54]

2
jkp cU a o~ Jk(r-a)

Equation 3.46 can be rewritten as
jkp cQ =jk(r-a)
°o__ & (3.47)

p()= T 5 3ka Grr
where Q is known as the volume velocity source strength.
The volume velocity source strength is the surface integral
of the velocity normal to the surface:

Q= [ u'n ds = 4na2U° (3.48)
-]
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~

where n is a unit vector normal to the surface.

Figure 3.8 shows the comparison of the IBEM results
with the analytical solution for the exterior of a
pulsating sphere of lm radius. The surface velocity of the
sphere was lm/s and the wavenumber was 0.0l. The IBEM
results are in excellent agreement with the analytical

solution.

For further verification, the acoustic pressure at a
single field point exterior to a pulsating sphere was
computed for a range of frequencies. The field point was
at a rvadial distance of 10m and the surface velocity was
lm/s. Figure 3.9 illustrates the results. Note that the
boundary element method solution diverges from the
analytical solution at the interior eigenfrequencies. This
phenomenon, labeled a uniqueness problem, is well
documented in the literature. The interior

eigenfrequencies avre the frequencies where the pressure at

the boundary is zero for the interior problem. From
equation 3.43, the interior eigenfrequencies for a
spherical cavity are found to occur at sin(ka)=0. For a

sphere of unit radius the eigenfrequencies are k==, 2=, 3=,
etc.. However, the eigenfrequencies apparent in Figure 3.9
are slightly larger than those calculated for the sphere of
unit radius. The IBEM predicts slightly larger values for

the eigenfrequencies because the eigenfrequencies result
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from the interior problem and are a function of sphere

radius. Thus, the geometric modeling errors as discussed
for the interior problem affect the eigenfrequency
solution. For an adjusted sphere radius of a=0.9437m (the

radial location of the elemental centroids for the 96
element model), the first two interior eigenfrequencies are
k=3.329 and k=6.658 which <closely <correspond to the
frequencies at which the IBEM solution diverges. Although
there is no known procedure for improving the boundary
element method solutions at the eigenfrequencies, it is
important to realize the existence of this phenomenon when

the IBEM is utilized for vradiation problems.

The point source modeling capability of the IBEM was
verified by investigating the sound field created by a
point source at the center of a rigid wall sphere. The
point source had a volume velocity source strength of
1 m3/sec. For this analysis, the 48 element sphere model
with velocity boundary conditions of magnitude zero were
used. The analytical solution for a point source at the
center of a rigid wall sphere of radius a is [50]

jkp ¢Q
o sin k(r—-a) + ka cos k(r=-a)
p(r)= 4ur ka cos(ka) - sin(ka) (3.49)

where Q is the volume velocity strength of the point
source. Figure 3.10 shows a comparison of the IBEM results

with the analytical solution for the acoustic pressure at
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t=§. In Figure 3.10, the frequency shift in the IBEM
solution is apparent as expected because the 48 element
model 4s a vough approximation of a sphetre. However, the

point source modeling capability of the IBEM otherwise

appears to be valid.

The 48 element sphere model was used to verify the
impedance boundary condition <capability of the IBEM. A
point source with volume velocity source strength of
0.5 m3/sec was positioned at the center of the model. The
sphere model was given impedance boundary conditions which
corresponded to the impedance for free field radiation.
The pressure field created by a point source (monopole)
with volume velocity source strength Q radiating into a

free field is [55]

jkpocQ e-jkr
p(r)= e - (3.50)

where v is the distance from the point source. The

specific acoustic impedance is given by

=2 - - £
z= jkp ¢ (3.51)

,g.z
T
Substituting equation 3.50 into equation 3.51 gives the

specific acoustic impedance as

jkp cr
o

z(t)= T+ j&kr (3.52)
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The analytical and IBEM predictions for the acoustic
pressure at r-% as a function of frequency are shown in
Figuvre 3.11. The IBEM results are in excellent agreement
with the analytical solution. The specific acoustic
impedance boundary conditions were calculated at the radial

locations of the element centroids which removed the

geomettric modeling ervor from the problem.

3.3.2 Rectangular Boundary Results

For verification purposes, the rectangular cavity was

analyzed as a one-dimensional system. Analytical
expressions for the pressurte distribution in one-
dimensional systems avre readily available and easily

evaluated. The frequency and method of excitation were
chosen such that one-dimensional behavior was ensured. Two
models of a rectangular cavity were used in the
verification process. Both models have dimensions of
1.,04775m x 1.02235m x 1.8288m. One model uses 80 elements

while the other uses 156 elements. The 80 element model is

shown in Figure 3.12.

The first acoustic problem considered was that of a
driven-rigid cavity. The end of the cavity at Z=1.8288m
was given a uniform velocity boundary condition of lm/s.

The other five sides of the cavity were rigid. The
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analytical solution of the driven-rigid cavity of length L

is [56]

=jp cU

o_o
p(x)= TnCkD) ©°° k(L-x) (3.53)

where U is the velocity of the driven wall and x is the
o

distance of a field point from the driven wall.

The accuracy of the IBEM results for the rectangular
cavity wevre found to depend on the geometrical location at
which the sclution was obtained. For analysis of the

tesults, solution 1locations were categovrized 1into four

qualitative groups:

- locations in the central portion of the cavity
- locations along a midsection of a cavity wall

- locations along an edge

locations near a corner

Results obtained with the 80 element model are compared to
the analytical solution in Figures 3.13 and 3.14. The IBEM
results in Figure 3.13 were <calculated along the line
described by X=0.5m, Y=0.5m (along the central portion of
the cavity). The IBEM results shown in Figure 3.14 were
computed for locations along the line described by X=0.1lm,
Y=0.1lm (along an edge). Overall, the IBEM results compare

well with the analytical solution. The results calculated
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along the line through the middle of the of the cavity
degrade slightly in accuracy near the ends of the cavity.
The data in Figure 3.14 shows this same behavior but to a
greater degree. Thus, the performance of the IBEM is least
accuvrate for domain locations in close proximity ¢to a

corner of the cavity.

A smaller element size improves the accuracy of the
IBEM results for 1locations near a corner. The data in
Figure 3,13 is replotted in Figure 3.15 along with the
results obtained with the 156 element model. Note that the
accuracy of the results for both models 1is approximately
the same. However, when the data for the 80 element model
is compared with the results obtained using the 156 element
model, an overall improvement in the accuracy is found for
the domain locations near cavity corners as shown in Figure

3.16,

The loss in accutracy of the IBEM solution for domain
locations near a cocrner 1is a result of the one point
quadvature approximation to the elemental boundary
integrals. As a domain location approaches a point on a
boundary element, the value of r in the fundamental
solutions for that domain location approach zero at the
boundary point. Depending on the size of the element and
where the domain 1location 1is situated relative to the

element, the value of v over the element may vary from
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relatively small quantities to much larger quantities as

1
shown in Figure 3.17a. Because of the T factor in the

fundamental pressure solution and the ™ factor in the
T

fundamental velocity solution, 1large variations as t
approaches zero cause the fundamental solutions to behave
as high order functions. Since the one point quadrature
poorly . integrates high order functions, the elemental
boundary integrals for the elements close to the domain
location avre not accurately approximated (equation 3.40).
Smaller element size improves the results because the
relative change in the value of r is less over a smaller
element as shown in Figure 3.17b, As shown by Gardner
[47), wusing higher order quadratures for approximating the
elemental boundary integrals also improves the boundary
element method vresults for domain 1locations near the

boundary.

The acoustic pressure as a function of frequency was
analyzed at particular locations in the driven-rigid
cavity. A comparison of the analytical solution with the
IBEM predictions for the pressure at a location in the
central portion of the cavity (0.5m,0.5m,1.0m) is presented
in Figures 3.18 and 3.19. The 80 element model was used to
obtain the rvresults in Figurve 3.18. The IBEM predictions
presented in Figure 3.19 were acquired with the 156 element

model. Comparison of Figures 3.18 and 3.19 shows both
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models perform equally well for centrally located domain
positions. The beginning of the IBEM solution divergence
from the analytical solution for the low frequency regime
is evident in both Figure 3.18 and 3.19. This divergence
is of the same nature as that discussed for the interior of
a pulsating sphere. For the driven-vrigid cavity problen,
the IBEM solution reverses slope at approximately k=0.1
(5.5 Hz). Using the 80 element model, the pressure as a
function of frequency was calculated for a domain location
near the middle of a side-wall. The results were identical
to those shown in Figure 3.18., Figure 3.20 shows the 80
element model results for a domain location near a corner
of the cavity (0.lm,0.1lm,0.1m). Figure 3.21 shows the
results for the 156 element for the same location. For
reasons previously discussed, the 156 element model
provides a more accurate solution at the domain 1location

near a corner but still shows some errtor.

The driven-infinite cavity was the next acoustical
construct analyzed with the IBEM. The analytical solution
for the pressure as a function of position in the cavity is

given by

p(x)= pocer-jkx (3.54)

where x is the distance from the driven end and U° is the

amplitude of the time harmonic velocity function at the
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driven end. The particle velocity along the cavity is

u(x)= er-jkx (3.55)

The specific acoustic impedance at a point in the cavity is

given by

z(x) E?;; P, (3.56)

Thus, the driven-infinite cavity problem can be modeled by
the rtectangular cavity by specifying the specific acoustic
impedance boundary condition with a value of p,c for the

wall opposite the driven end.

The IBEM solutions for the driven-infinite cavity
using the 80 element model and the 156 element model are
presented in Figure 3.22. Note that the scale has been
expanded significantly. The velocity at the driven end was
lm/s and the wavenumber was 2. The 156 element model had
slightly better accuracy overall. The maximum ervor for
the 80 element model is approximately 5.5% while the
maximum ervor for the 156 element model is approximately
3%. For higher values of wavenumber the accuracy of the
IBEM detetriorated particularly at locations near the cavity
ends. Consistent with the results for the driven-vrigid
cavity, the performance of the IBEM degraded for the
dviven-infinite cavity problem at domain locations near a

cornect.
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An interesting aspect of the convergence of the
boundary element methods is apparent in Figure 3.22.
Unlike finite element methods, boundary element methods
cannot be mathematically proven to converge to the true
solution as the element size is decreased. Consequently,
boundary element method results may not systematically
approach the true solution with decreasing element size.
This feature is noticeable in Figure 3.22. The 80 element
model overpredicts the analytical solution while the 156
element model basically underpredicts the analytical

solution.

3.3.3 Summary

In the preceding sections, it has been shown that the
IBEM (as developed in this thesis) is a viable method for
the prediction of the acoustic pressure in sound fields.
However, there are several phenomena which must be
acknowledged. First, when modeling curved surfaces with
geometvrically flat elements, the model should be
constructed such that the centroids of the elements lie on
the curved surfaces. Second, the pressure solution for
exterior problems diverges from the true solution at the
eigenfrequencies of the corresponding intervrior problem.
Thivrd, the IBEM results are inaccurate for the very 1low
frequency vtegime of interior problems. However, this

problem is irrelevant for this work because active noise
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controllers are unable to operate at such low frequencies.
This low frequency inaccuracy potentially can be overcome
with better integration. Fourth, although the IBEM results
for the rectangular cavity were excellent overall, the
accuracy of the IBEM solution does degrade at domain
locations in close proximity to a corner. The results for
domain 1locations neatr a corner do improve, however, with a

finer discretization.



Figure 3.1

74

kol

o'l

- Geometcvical Description For The
Boundary Element Method Formulation

Indirect



75

ol
=~

o'l

Figure 3.2 - Polar Coordinates For An Element



76

Figure 3.3 - Geometry For Integration

of

The
Pressure Solution In Polar Coordinates

Fundamental



71

180 .0

++J-LL¢_LLLL4A n
et

90.00

0.000 -

Phase

-90 .00 - +

domd
LA I Jn S At of +sTT T T +

-+

L U L 2 NN
—t e

-180.0
0.00

L L L] 1 ) 1 L) ¥ L
1.00 2.00 3.00 “.00 S.00 6.00 7.00 8.00 9.00 10.0

10.00

8.000 -

6.000 -

%.000 -

Pressure Magnitude

2.000 -

0.000
0.00

Figure 3.4

L) L) i
1.00 2.00 3.00

- Analytical

1 L) ¥ ] Ll 1
4.00 5.00 6.00 7.006 8.00 9.00 10.0

Wavenumber

And Numerical Predictions For The

Pressure At Half The Radius Of A Pulsating
Sphere As A Function Of Frequency (p°c= 1.0).

Analytical Solution
+ 96 Element Model IBEM Solution



78

180 .0

+}+;¢;;44.4..

90.00

0.000 A

Phase

=90.00 -

+

e o e 2 o

-y

+
i

I

Lt bt o
AR 2 2~

-180.0
0.00

T T T T
1.00 2.00 3.00 4.00

L] 1

5.00 6.00 7.

¥ T ¢
00 8.00 9.00 10.C

10.00

8.000

6.000 -

%.000 -

Pressure Magnitude

2.000 4

0.000
0.00

Figure 3.5

] L T T L) R} ¥ | 1
1.00 2.00 3.00 4.00 S.00 6.00 7.00 8.00 9.00 10.0

Wavenumber

= Adjusted Analytical Solution For The Pressure

At Half The
(p°c= 1.0).

Radius

of A

Pulsating Sphere

Analytical Solution With a=1.0

- - = Analytical Solution With a=0,9437
+ 96 Element Model IBEM Solution



79

180 .0
e

90.00 - .
o
n
U  0.000 4
5

~90 .00 ;

®

16.00
: o  ©.000 - +
s,
| 5
1 -
| o
! & 6.0001 |
| = >
v
| -
5 4.000
n
0
v
| -
& 2.000
0.000

) 1 ¥ | ! T 1 L]
0.00 1.30 2.00 3.00 4.00 5.00 6.00 ?7.00 8.00 9.00 10.0

Wavenumber

Figuvre 3.6 - Effect Of Element Mesh Size On The IBEM
Solution For The Pressure At Half The Radius
Of A Pulsating Sphere (p c= 1.0).

Analytical Solufion

o 96 Element Model IBEM Solution

+ 48 Element Model IBEM Solution

C - ol



Phase

Pressure Magnitude

Figure 3.7 - Analytical And Numerical Pressure
The Radius Of A Pulsating Sphere For

80

180 .0

-+

+
AR s T TP

90.00

0.000 o

-90 .00 -

Fhbbbbbi,

-180.0

1 ' T LI ] T L L ¥
0.00 .100 .200 .300 .400 .500 .600 .700 .800 .900 1.00

'50.00

%0 .00 -

30.00 -

20 .00 A

10.00 A

++
+
++.*""+""4'++++-;-.

L

+

0.000

0.00

I 1 ] L) ) T L] 1) 1
.100 .200 .300 .400 .S00 .600 .7?00 .800 .S900 1.00

Wavenumber

At Half
The Low Frequency Regime (p c= 1.0).

Analytical Solutiof
+ 48 Element Model IBEM Solution

Predictions



81

180.0

90 .00 o~}

0.000 -

Phase

-90 .00 A

"1800 T T L T T L T L T
g.00 S.00 10.0 150 20.0 25.0 30.0 35.0 40.0 45.0 S0.0

.0100

.0080 -

.0060 A

.0040 -

Pressure Magnitude

.0020 -

PP
L s s o

- ,
T e

0.000 L) Ll v ] 1 I L) Lo T
0.00 5.00 10.0 15.6 20.6 25.0 30.0 35.0 40.0 45.0 S50.0

Radial Distance (r>

Figure 3.8 - Analytical And Numerical Predictions Of The
Pressure Distrvibution For The Exterior Of A
Pulsating Sphere At k=0,01 (poc- 1.0).

Analytical Solution
+ 96 Element Model IBEM Solution




82

180.0

90 .00 A

0.000 A

Phase

-90 .00 A

-180.0 T
0.00 1.00

.2000

.1600 ~1

.1200 -

.0800 -

Pressure Magnitude

.0400 -

0.000 T
0.00 1.00

Figure 3.9 - Analytical And Numerical
Pressure As

L 1 T

) 1
a.0¢ 3.00 4.00

Wavenumber

Predictions

Analytical Solution
+ 96 Element Model IBEM Solution

of

The

A Function Of Frequency For The
Exterior Of A Pulsating Sphere (poc= 1.0).



83

180.0

g
90 .00 4 + ++-r-|--r + +4+4

+
0.000 -

Phase

90 .00 AT +43+ +4“L¢"¥+1 feepr 4“++

180-0 ] L) i it L i ¥ ] : )
0.00 1.00 2.00 3.00 4.00 S.00 6.00 7.00 8.00 9.00 10.0

10.00

8.000 - +

6.000 -

%.000 -

Pressure Magnitude

2.000 A

+
0.000 T e S T T r r ;
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.0

Wavenumber

Figure 3.10 - Analytical And Numerical Predictions For The
Pressure At Half The Radius Of A Rigid Wall
Sphere With A Point Source At The Center
(p c= 1.0).
° Analytical Solution
+ 48 Element Model IBEM Solution




84

180.0

90 .00 -

0.000 A

Phase

=90 .00 -

-180.0
0.00

1 1 1 T T L 1 ] {
1.60 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.0

1.000

.8000 -

.6000 -

L4000 -

Pressure Magnitude

.2000

0.000
0.00

Figure 3.11

1 1 L) L) B 1 ¥ ) ]
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.0

Wavenumber

- Analytical And Numerical Predictions For
Pressure At Half The Radius Of A Sphere
Free Field Impedance Boundary Conditioas
A Point Source At The Center (p c= 1.0).

Analytical Solution

+ 48 Element Model IBEM Solution

The
With
And



|

85

1.02235m

Z

1.04775m

>

\< 1.8228m

Figure 3.12 - 80 Element Rectangular Cavity Model



86

180.0

90.00 A

0.000 -

Phase

=90 .00 fF—e—t—+—+—+—+—+—+—

-180.0
g.00

: L] | ' 1 L T Ll ]
.200 .400 .600 .800 1.00 1.20 1.40 1.60 1.80 2.00

1000.0
900.00 -
800.00 -
700.00
600.00 -
500.00
400.00 -

300.00 -

Pressure Magnitude

200 .00 -

100 .00 A

0.0000
0.00

T L) L] L) 1 1 1 ¥ 1
.200 .400 .600 .800 1.00 1.20 1.40 1.60 1.80 2.00

Distance From Driven Wall

Figure 3.13 - Analytical And Numevrical Predictions Of The

Pressure Distribution Near The Center O0f The
Driven-Rigid Cavity At k=2.0 (p c= 415.0).

Analytical Solution
+ 80 Element Model IBEM Solution




87

180.0
90 .00 -

0.000}

Phase

=90 .00 ]

-180.0

L4 L] L] T ¥ L 1 L L}
0.00 .200 .400 .600 .800 1.00 1.20 1.40 1.60 1.80 2.00

1000.0
900 .00 -

800 .00 -

600 .00 -
500 .08 -
400 .00 -

300.00 -

Pressure Magnitude

200 .00 -

100.00 -

700.00 -
+

0.0000

] Ll T Ll ] L4 L Ll 1
0.00 .200 .400 .600 .800 1.00 1.20 1.4 1.60 1.80 2.00

Distance From Driven Wall

Figure 3.14 - Analytical And Numerical Predictions Of The

Pressure Distribution Along An Edge Of The
Driven—-Rigid Cavity At k=2.0 (poc- 415.0).

Analytical Solution
+ 80 Element Model IBEM Solution




180 .0

90 .00 -

Phase

~S0.00

-180.0
0.00

1000.0

900

800

700

600

500

400

300

Pressure Magnitude

200

100

0.0000
0.00

0.000 -

.00 S

.00 -

.00 1

.00 1

.00 -

.00 1

.00 A

.00 -

.00 -

88

T ] + L L) L L) 1) 1
200 .400 .600 .800 1.00 1.20 1.40 1.e0 1.80 2.00

1 ¥ 4 ] L] L] Ll ¥ v
.200 .400 .600 .800 1.00 1.20 1.40 1.60 1.80 2.00

Distance From Driven Wall

Figure 3.15 - Effect Of Element Mesh Size On The IBEM

Solution For The Pressuvre Distribution Along
The Center Of A Driven-Rigid Cavity At k=2.0
(p c= 415.0).

° Analytical Solution
+ 80 Element Model IBEM Solution
o 156 Element Model IBEM Solution




-

180.0

90 .00 -

Phase

-90 .00

-180.0

1000 .0

900

800

700

600

500

400

300

Pressure Magnitude

200

100

0.0000

0.000 4

.00 A

.00 -

.00 A

.00 -

.00 4

.00 -

.00 4

.00 4

.00 -

89

0.00

L L} 1 1 | T Ll 1) L
.200 .400 .600 .800 1.00 1.20 1.40 1.60 1.80 2.00

¢.00

) 1 ) Ll 1 L IR T ]
.200 .400 .600 .800 1.00 1.20 1.40 1.60 1.80 2.00

Distance From Driven Wall

Figure 3.16 - Effect Of Element Mesh Size On The IBEM

Solution For The Pressure Distribution Along
An Edge Of A Driven-Rigid Cavity At k=2.0
(p c= 415.0).

° Analytical Solution
+ 80 Element Model IBEM Solution
o 156 Element Model IBEM Solution




90

(a)

Figure 3.17

(b)

- Effect Of Element Mesh Size On The Behavior
of The Quantity r In The Fundamental
Solutions For Domain Locations Close To The
Boundary



91

180.0

90 .00

0.000 A1

Phase

=90 .00 A

.......
+-|-T‘rTTT1 T

-+

-180.0
0.00

L) L T ¥ ¥ ¥ ) 1) ]
.500 1.00 1.50 2.00 2.50 3.00 3.50 4.00 %.50 S.00

1000.0

900 .00 A

800 .00 A

700 .00 -

600 .00 -

500 .00 -

400 .00 A

300.00 -

Pressure Magnitude

200.00 -

100 .00 S

o

0.0000
0.00

Ll L} L L] LJ L] 1 1 L)
.500 1.00 1.50 2.00 2.50 3.00 3.S50 4.00 %.50 S5.00

Wavenumber
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CHAPTER 4

AN OPTIMAL ACTIVE NOISE CONTROLLER FOR ENCLOSED

SOUND FIELDS WITH COMPLETE SYSTEM DESCRIPTION

This chapter presents the definition and formulation
of a generalized technique to find an optimal active noise
controller in <completely or partially enclosed sound
(noise) fields and evaluation of optimal active noise
controllers for various system characteristics. Four
assumptions are maée about the system configuration for the
algorithm formulated in this chapter. First, the sound
field has a harmonic dependence of the form ejwt. Second,
the boundary has a known geometrical description and the
conditions at the ©boundary are known. Third, any point
noise sources in the system have a known source strength.
Fourth, the canceling sources locations are known, and the
secondary sources atre modeled as monopoles. Thus, the
performance of active noise controllers opervating under
ideal circumstances will be investigated. Such topics as

stability, observability, and causality will be addressed

in chapter 6.
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4,1 Problem Formulation

In the following sections, a formulation of an optimal
active mnoise controller is discussed and an expression for
the optimal active mnoise controller using the IBEM
formulation 1is derived. In the subsequent formulation,

capital letters will denote mattix quantities.

4.1.1 Introduction

The active noise control problem addressed in this
chapter is that of <controlling harmonic, enclosed sound
fields. No rvestrictions arvre placed on the shape of the
enclosure or the sound propagation within the enclosure. A
general schematic of the system is shown 3in Figure 4.1.
The system is comprised of four components: the enclosure
boundary, point noise source(s), controllable point

source(s), and observation point(s).

For this particular investigation, the enclosure
boundary must have a known set of boundary conditions
corresponding to a well-posed boundary value problem.
Either acoustic pressure, particle velocity, or locally
reacting specific acoustic impedance is assumed to be known
at every point on the boundary. 1In addition, the geometry
of the boundary must be completely described by a fixed set
of Cartesian coordinates. The specific acoustic impedance

boundary condition can be used to model an open portion of
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the enclosure. Thus, the enclosure need not be complete.

Two types of point acoustical sources avre possible in
the system. The first type is the uncontrollable point
noise source which hereafter will be referred to as a
primary source. Primary sources have a time harmonic
volume velocity source strength of known amplitude and
relative phase. The positions of the primary sources must

be given by the coordinate system describing the boundary.

The second type of point source 1is the controllable
point source which will be referred to as a secondary
source. The secondary sources are introduced into the
enclosure to control the noise field. The objective is to
solve for the wunknown amplitude and phasing of the
secondary sources such that a control objective function is
minimized. The positions of the secondary sources must Dbe

specified.

Observation points are locations within the enclosure
where attenuation is desirced. The secondary source
strengths are determined such that the sound field is
minimized at the observation points. The locations of the

observation points must be known.

An uncontrolled harmonic sound (noise) field is
created in the enclosure by either the enclosure boundary

effects or the primary noise sources or a combination of
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both. Given all of the specifications of the system, the
objective is to determine an optimal controller. The
optimal controller, as defined for the current research, is
the modulus and phasing of the secondary sources which
minimize the acoustic response at the observation points.
The control objective function 1is computed from the
acoustic vresponse at the observation points. Because the
control objective function is derived as a function of the
unknown secondary source strengths, an expression for the
optimal <controller can be obtained by minimizing the
control objective function with respect to the secondary

source strengths.

4,1.2 The Control Objective Function

As stated by Bullmore et al. [28], a practical control
objective is to minimize the acoustic response (pressure)
at a number of discrete 1locations in the enclosure.
Consequently, the control objective function chosen for the
current research is a weighted sum of the magnitudes of the

pressure squatved at the observation points:

ncp
m= £ |p,|?
i=]

w (4.1)

i

th
where, P, is the acoustic pressure at the 1 observation

th
point, Wy is the weighting factor at the i observation

point, and n is the number of observation points.
cp
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Observation point weighting permits many possible
control strategies. Two strategies of active noise control
are considered here. The first strategy is referred to as
local control. Local control is chavacterized by
utilization of one or few equally weighted observation
points. By using a local control scheme, it is likely that
the overall noise level will increase at other locations in
the enclosure while the noise 1s attenuated at the
observation points. The 1increase in the overall noise
level at the other 1locations is deemed acceptable for a
local control scheme. A typical example of 1local <control
is attenuation of noise at a passenger”s head location in a

transportation vehicle.

The second strategy of active noise control problems
is termed global control. Global control is characterized
by an attenuation of the noise 1level throughout the
enclosure. Global control is accomplished im this
investigation by utilizing a "fine" grid of observation
points throughout the enclosure and weighting each
appropriately. A typical example of global control might
be the overall attenuation of noise throughout an aircraft

fuselage.

A practical method of weighting the observation points
in a global control problem is volume weighting. The

entire enclosure volume is divided into local volumes such
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that each obsevrvation point is apportioned a local volume.
Volume weighting is achieved by using the local volume as
the weighting factor for the <corresponding observation
point. The local volume is chosen so that the observation
point is at the centroid of the volume. When volunme
weighting is used, the control objective function resembles
the total time averaged acoustic potential energy of the

enclosure.

4.1.3 1IBEM Formulation Of The Control Objective Function

If the acoustic pressures at the observation points
are written in complex form, the control objective function

of equation 4.1 can be rvewritten as
= BHWR ' (4.2)

where [W] is a ncp x ncp diagonal matrix with the values of
the weighting function (wi’s) on the diagonal, and p is a

column vector representing the pressures at the observation

points. The H superscript denotes the hermitian transpose.

From the IBEM formulation of section 3.2, the
pressures at a set of domain locations are given by

equation 3.38 as
R =D + E¢ (3.38)

Because there are two types of point sources (primary and
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secondary) in the problem domain, [E] and ¢ are partitioned

as
E = [E | E]|] -- | =E¢ +E ¢ (4.3)

where ¢ contains the primary source strengths, and Qs
P

contains the secondary source strengths. The i,j element
of [E]p represents the influence of the jth primary source
on the ith observation point. Likewise, the i,] element of
[E]S vrepresents the influence of the jth secondary source
on the ith observation point. Utilizing equation 4.3,

equation 3.38 can be rewritten as

p = Do + Epg,_p +E S (4.4)

However, o is unknown and is not necessary for the
solution of the problen. From equation 3.36, o may be

found as

-1

g = A (z - C¢) (4.5)
Partitioning [C] and ¢ as
QP
Cy = [cp | c Iy -—— | = cpgp +C o (4.6)
<s

enables equation 4.5 to be rvewritten as



-1
g=4A (@-Co -Cyo) (4.7)

Substituting equation 4.7 into equation 4.4 gives

-1 -1 -1
p = DA "a + (Ep - DA c:p)gp + (E, - DA "C)e (4.8)

The pressures at the observation points are only a function
of the (potential) noise sources from the boundary, a, the

primary sources, ip’ and the secondary sources, is.

Substituting equation 4.8 into equation 4.2 gives an
expression for the control objective function in terms of

the noise sources and the secondatry sources as

H H H H_H H
II = ¢ RWR¢ + v WR¢ + ¢ R Wy + v Wy (4.9)
s =s - ] =s - - -
where
-1
R =E - DA C (4.10)
s s
-1 -1
v = DA a + (E - DA "C )¢ (4.11)
- - p P P

Thus, the control objective function is written in terms of
the IBEM formulation. Note that v is exclusively a
function of the noise sources and that XHWX is the value of
the control objective function without the active noise
controller. If n denotes the number of secondary

§s
sources, then [R] is n X n and v is of order n .
cp s8 - cp
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4.1.4 An Optimal Controller

The conttrol objective function written in terms of the
IBEM formulation, equation 4.9, 1is a real, positive
definite, quadratic function of the secondary source
strengths. Such a fqnction has a single unique global
minimum [30]. Hence, there is a unique solution for the
complex secondatry source strengths which globally minimize
the sound field at the observation points. The complex
secondatry source strengths which minimize the <control
objective function are given when the derivative of II with

(R)

respect to both the real part of gs, &s , and the

1
imaginary part of is’ gi ), is equal to zero [30]:

an oIl
—_— 4+ j—=< =0 (4.12)
aggR) bigl)

Utilizing equation 4.12, the minimum value of the control

objective function is found to occur when
RHWR_c_b_S + Rwa = 0 (4.13)
The unknown secondary source strengths which minimize II are
91: - —(RWR) Ry (4.14)

where Q: denotes the values of the optimal secondary sourtce
strengths (the optimal controller). The corresponding

minimum value of the control objective function is
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(o] (o]
I = 0(g =¢ ) = ¥ Wy + v WRY_ (4.15)

The attenuation due to the optimal active noise controller

is evaluated as

n

ATN = 10 log _g_z (4.16)
m

where pr =H(gs-2) and ATN denotes attenuation.

A special case of active noise control in enclosures
occurs when the number of secondary sources equals the
number of observation points. If this condition occurs,
then [R] is square, and equation 4.14 reduces to g: = -R-ll

(assuming [R] is nonsingular)., Substituting the solution

for g: into equation 4.15 gives

H B -1
n° = v Wy - v WRR ' v (4.17)

Since RR—I-[I] where [I] is the identity matrvix, it can be
seen that I°=0. Therefore, n secondary sources atre capable
of completely canceling the noise at n locations imn the
cavity. If [R] is singular, the matrix does not consist of
independent equations. A singular [R] matrix is probably
an indication that the secondary soutrces are located such
that they do not excite independent modal responses, ot the
observation points do not independently observe the
sources. Such a situation is wunlikely in most cavities

unless the observation points avre coincident.
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4,2 Case Study Results

In this section, the optimal solutions for a number of
active noise control system configuvrations are presented.
For each configuration, the optimal active noise controller
(secondary source strengths) and corresponding performance
were computed over a frequency band. As is characteristic
of Dboundary element methods, analysis of the problem is
performed at a discrete frequency. By analyzing the
problem at a series of frequencies, the optimal controller

as a function of frequency can be obtained.

The optimal contvroller was analyzed for two different
enclosure shapes. The first enclosure considered is a 48
sided polyhedron centevred about the origin. The polyhedron
approximates the shape and acoustical behavior of a sphere
with a 1.0m radius. Because of the symumetry of the
polyhedron, the mechanisms at work can be understood, and
thus, conclusions about the Dbehavior of active noise
controllers are straightforward. The polyhedron was
modeled wusing 48 triangular superparametric boundary

elements.

The second enclosure 1Is a rectangular prism with
dimensions of 1.04775m x 1.02235m x 1.8288m (shown in
Figure 3.12). The eigenfrequency values for the

tectangular prism with rigid walls are given in Table 4.1.
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Table 4.1 - Eigenfrequencies Of The Rectangular Prism

Mode (m,n,q) kmnq fmnq (dz)
(0,0,1) 1.72 93.9
(1,0,0) 2.998 163.7
(0,1,0) 3.073 167.8
(0,0,2) 3.43 187.2
(1,0,1) 3.46 188.9
(1,1,0) 4.29 234,.2
(1,1,1) 4,62 252.2

The vectangular prism was modeled with 80 triangular

superparamettric boundary elements.

For purposes of analysis, the optimal secondary source
strengths are normalized with respect to the volume
velocity source strength of the noise producing mechanism,

Q

sn® The volume velocity source strengths of the optimal

secondaty sources artre given by

o __4m o©
gs jkpoc is

(4.18)

For each enclosure a 1lattice of volume weighted
observation points was developed for analysis of global
noise control problems. A nonsymmetvric lattice of 48
evenly distributed observation points was constructed for
the 48 sided polyhedron. The spherical domain inscribed by
the polyhedron was divided into six concentric spherical

shells. Each shell was then divided into eight equal
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volume sections. The observation points were positioned at
the centroids of the spherical shell subsections. The
weighting factors were the corresponding volumes of the
subsections. To obtain a nonsymmetric distribution of
observation points, each spherical shell was rotated about
the X-axis, Y-axis, and Z-axis (in that order) by 15° with
respect to the neighboring shell on its inside surface.
For the rectangular prism, a symmetric grid of 72 evenly
distributed, volume weighted observation points was

developed.

Active noise control problems involving the 48 sided
polyhedron enclosure were analyzed from k=0.5 to k=10.0 (27
Hz to 546 Hz). For active noise control problems in the
rectangular prism enclosure, analysis was performed from
k=0.125 to k=5.0 (7 Hz to 273 Hz). The value of p,c was
415.0 Pa's/m (air at 20°C) for all case studies presented

in this chapter.

If the enclosure boundary was the noise producing
mechanism, then an was computed from the surface integral

of the normal velocity:

n dS (4.19)

-~

where n is a unit vector normal to the enclosure surface.
If the noise field was genevrated by a set of primary

sources, an was computed from



109

n
4y ps
Q - T ¢ (1) (4.20)
sn jkpoc j=1 P
where n is the number of primary sources.

ps

4.2.1 Global Noise Control

The system configuration for case 1 was a single
secondary source at the center of the 48 sided polyhedron
which was uniformly pulsating with a time harmonic normal
surface velocity unﬂl.Om/s. 'There were no primary sourtces
in the problems Global noise control was sought; i.e., the

set of 48 volume weighted observation points were used.

Figure 4.2 shows the performance of the optimal
controller, and Figure 4.3 presents the optimal controller
versus frequency. There are several noteworthy features of
Figures 4.2 and 4.3. First, the control objective function
for optimal control approaches zero in the 1low frequency
limitc. In the 1low frequency 1limit, the optimal active
noise controller adds and subtracts volume from the systen
such that all the energy in the system is kinetic (the
fluid moves as a lumped mass), and hence Ho, which
resembles minimum potential energy, approaches zero [9].
Second, the only frequencies at which significant global
attenuation occurs is at very low frequencies and at the
natural resonances of the cavity (k=5.0 and k=8.75).

Third, the optimal active noise controller is completely
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ineffective at the antiresonances (frequencies of wminimum
noise field ~response). Note that with the active noise
controller, the potential energy is almost wuniformly the
same as found at the antiresonances. Fourth, the optimal
secondary source strength is less than the volume velocity
of the enclosure boundary for all frequencies considered.
Thus, efficient global noise control is possible at 1low
frequencies and at the enclosure natuvral frequencies. Away
from the natural frequencies, the global attenuation is
much less, but the secondary source strengths are

correspondingly veduced.

Figure 4.4 presents the pressure profiles of the
uncontrolled and controlled sound fields for case 1 at
frequencies of low attenuation and high attenuation. In
Figure 4.4a, note that sound field was not uniformly
reduced. The effect of the secondary source 1is dramatic
despite the small level of attenuation achieved. However,
at the first enclosure resonance (k=5.0), global
attenuation was attained as shown in Figure 4.4b. To
ensure global attenuation at every frequency, a finer

observation point mesh could be used.

The system configuration studied for —case 2 is
identical to that of <case 1 except that the secondary
source was positioned at half the distance from the <center

of the polyhedron to its boundary. The results for case 2
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are presented in Figuvres 4.5 and 4.6, Comparing Figures
4.5 and 4.2, it can be seen that the attenuation is still
greatest at the natural frequencies but is much 1lower for
case 2. Also note that the required optimal secondary
source strengths at the frequencies of maximum attenuation
are larger for <case 2., Moreover, the control objective
function with the secondatry source operating is not uniform

over frequency in case 2.

The optimai active noise controller for case 1
achieved better performance because the secondary source
was positioned at an antinodal location of all enclosure
modes. All eigenfunctions of the pulsating polyhedron have
a maximum at the center. Consequently, the secondary
source was able to excite eigenfunctions of the same form
as those produced by the noise source (good modal
coupling). However, if the secondary source is positioned
away from the antinodal locations, as was the situation in
case 2, its effectiveness is reduced as seen in Figure 4.5

[28,31,32].

Cases 3, 4, and 5 further demonstrate the importance
of modal coupling for global noise control. For cases 3,
4, and 5, a single secondary source was positioned a
distance of O0.lm, 0.2m, and 0.3m, respectively, away from a
primary source at the center of a rigid 48 sided

polyhedron. The tesults for cases 3, 4, and 5 are shown in
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Figures 4.7 and 4.8. The benefit of modal coupling 1is
appavent in Figure 4.7. The attenuation increased at all
frequencies as the secondary soutrce approached the primary
source. The increase in the attenuation is a result of the
fact that when the secondary source is close to the primary
source, it <can effectively couple into the same modes
excited by the primary souvrce. In Figure 4.8, note that as
the secondatry source approaches the primary source, the
optimal <controller and primary source combination is
approaching the form of a dipole (equal in magnitude and

180° out of phase).

Case 6 extended the analysis of cases 3, &4, and 3.
Case 6 was identical to cases 3, 4, and 5 except that the
secondary source was located 0.0lm away from the primary
source. The results of case 6 are presented in Figures 4.9
and 4.10. Note that the secondary source formed a dipole
with the primary source. Cases 3 through 6 suggest that if
the noise source is compact, the canceling source(s) should
be placed as close as possible to the noise source for

maximum attenuation of the noise field [28].

Cases 7, 8, and 9 demonstrate the effect of the
placement of secondary sources for the global noise control
of a distributed source. Four adjacent sides of the 48
sided polyhedron were given velocity boundary conditions of

1.0m/s. The remaining 44 sides were given «rigid wall
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boundary conditions. A secondary source was situated along
a radial line (from the center of the polyhedron) to the
centroid of the vibrating surface of the combined four
sides. The secondary soutrce was located at distances of
O.lm, 0.2m, and O.3m away from the centroid of the four
sides for cases 7, 8, and 9, respectively. The rtresults are
shown in Figures 4.11 and 4.12., Figures 4.11 and 4.12
suggest that placing a secondary source in close proximity
to a distributed noise source {s not necessarily

advantageous.

The placement of remotely located secondary soutces
for the global control of noise fields created by
distributed sources was analyzed wusing the rectangular
cavity. The end of the rectangular cavity at Z=1.8288m was
given velocity boundary conditions of 1.0m/s while the rest
of the enclosure was tigid. The set of 72 volume weighted
observation points was used. For <case 10, a single
secondary source was located at (0.5m,0.5m,0.7808m). For
case 11, the secondary source was located at
(0.5w,0,5m,1.5288m). Figures 4.13 and 4.14 display the
tresults of case 10 while Figures 4.15 and 4.16 show the

tesults of case 1l1.

Note that the secondary source placement of case 11
results in increased performance of the optimal active

noise controller at frequencies around k=2.0. At the




114

frequency cortesponding to a wavenumber of 2.0, the
secondary souvrce for case 10 is positioned at a nodal
location of the uncontrolled sound field while for case 11
the secondary source is at an antinodal location. Because
the secondary source was located at an antinodal location
for case 11, it was able to excite a response similar
spatially to the uncontrolled sound field but opposite in
phase. However, if the secondary source is located at a
nodal location (case 10), the secondary source is unable to
excite a modal pattern which will effectively <control the

noise field. At high frequencies, neither secondary source

position is such that a similar field can be generated, and

thus, the performance is poor.

Hence, if global narrow-band attenuation is desired
using vremotely located secondary sources, the secondary
sources should be placed at an antinodal 1location of the
noise field. For broadband global noise reduction, optimal
placements for the secondary soutrces artre locations where
all eigenfunctions of the enclosure have a maximum, such as
the center of a 48 sided pulsating polyhedron or the

corners of a rigid wall rectangular prism.

The sudden local minima at k=3.0 in the attenuation
curves of Figures 4.13 and 4.15 are due to presence of
cross modes in the enclosure, The noise source in cases 10

and 11 is such that it only excites longitudinal modes of
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the cavity. However, the secondary source is capable of
exciting both 1longitudinal and cross modes. The (1,0,0)
and the (0,1,0) cross modes have natural frequencies at
approximately k=3.0. Consequently, at k=3.0 a nonzero
secondary souvrce strength would excite previously unexcited
modes while attempting to cancel the noise field and thus
cause the overall sound pressure level to increase. Hence,
the optimal solution 1is a near-zero secondatry sourtce
strength; i.e., any attempt to attenuate the noise field
would result in an overall increase in sound pressure level
due to high <c¢ross mode response at k=3.0. The 1local
minimum at k=1.25 4in Figure 4.13 is a result of the fact
that the combined acoustic responses at the observation

points due to the secondary source has a minimum at k=l.25.

4.2.2 Local Noise Control

The local control at one observation point wusing a
single secondary source was studied in case 12. The single
secondary souvrce was at the center of a uniformly pulsating
48 sided polyhedron with a surface velocity of 1.0m/s. The
observation point was at one-half the distance from the
center to the polyhedron boundary. Figure 4.17 presents
the optimal controller as a function of frequency. Because
the number of secondary sources equaled the number of
observation points, the secondary source completely

attenuated the noise field at the observation point.
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The unbounded maxinmum at k=3.15 represents
uncontrollability. At approximately k=3.15, the acoustic
modal response of the secondary source has a pressurtre zero
at the observation point. Thus, the secondary source is
unable to influence the acoustic response at the
observation point. Consequently, the required optimal

secondary source strength tends towards infinity.

The pressure distributions of the wuncontrolled and
controlled noise fields at k=2.,0 for case 12 are shown in

Figure 4.18. WNotice that the only locations at which the

noise field was teduced were those neighboring the
observation point (radial position=0.5m). At locations
near the secondary source, the magnitude of the sound

pressure level increased dramatically.

In a study similar to case 12, case 13 examined 1local
control at one observation point in a driven-rigid
rectangular cavitye. The wall at 2Z=1.8288m was given
velocity boundary conditions of 1.0m/s while the rest of
the cavity was rtigid. A single secondary source was
located at (0.5m,0.5m,0.7808m) and the observation point
was at (0.5m,0.5m,1.5288m). Figure 4.19 shows the rtesults
for case 13. The relatively high secondary source strtength

required at k=2.0 results from the fact that at k=2.0 the
observation point is near an antinodal location of the

uncontrolled sound field while the secondary source is near
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a nodal location of the uncontrolled sound field.

By studying the results of cases 12, 13, and others
not presented here, a general strategy for placement of
secondary sources was developed. For local control it is
important to locate the secondary source(s) such that the
response at the observation point(s) due to the secondary
source(s) is maximum or near maximum for all frequencies
considered. This strategy includes the situation where the
secondary source 1is brought very close to the observation
point such as with ear defenders. If the observation point
is at a mnodal 1location of the secondary source modal
pattern for a particular frequency, then infinite secondary
source strength will be required for local control
(uncontrollability). In general, if the observation point
is at a location of high noise field response and the
secondary source is at a location of 1low noise field
response, then large (not infinite) secondatry source
strengths will be required. However, if the secondary
source can effectively excite a mode unexcited by the noise
field which has an antinode near the observation point,
then it 1is irvrelevant whether the secondary soutrce is

located near a node of the noise field or not.

The effect of closely coupling the observation point
and the secondary source for a one-point local control

scheme was investigated in cases 14, 15, and 16. A single
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observation point was positioned at half the distance (from
the center) to the boundary of a uniformly pulsating 48
sided polyhedron with a surface velocity of 1.0m/s. The
secondary soutrce was located at distances of O.lm, 0.2m,
and 0.3m away from the observation point for cases 14, 15,
and 16 respectively. The optimal secondary source
strengths are shown in Figure 4.20. Note that no one
particular secondary source position 18 advantageous for
all frequencies. However, the average normalized optimal
secondary source strengths for cases 14, 15, and 16 are
0.221, 0.350, and 0.471 respectively. Thus, for broadband
purposes, it is advantageous to locate the secondary source

as close as possible to the observation point.

4.,2.,3 Multiple Secondary Sources

The merits of using multiple secondary souvces for
global noise <control were investigated. The results of a
case study (case 17) analogous to that of case 1, except
that two secondary sources were employed, are presented in
Figures 4.21 and 4.22. The two secondary sources were
positioned at half the distance to the 48 sided polyhedron
boundary and 180° apart. Comparing Figures 4.2 and 4.21,
it can be observed that in the lower frequency regime the
two secondary sources provided slightly better attenuation
than the single secondary source. However, for the higher

frequencies the single secondary source gave better
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petrformance for less trequired soutrce strength.

Extending the analysis of case 17, a system with four
secondary sources was examined (case 18). The system
configuvration was identical to case 1 with the exception
that multiple secondary sources were used. The secondary
sources for <case 18 were located at (0.25m,0,0),
(0,0.75m,0), (0,-0.5m,0), and (-0.75m,0,0). The results of
case 18 are presented in Figure 4,23, Comparing Figures
4,2 and 4.23, it can be seen that overall the four
secondary sources did not provide significantly better
performance than the single secondary source. In general,
the combined optimal secondary source strengths of the four
secondaty sources were slightly greater than the optimal
source strength of the single secondary source in case 1

(at any particular frequency).

The results of cases 1, 17, and 18 suggest that a
single, optimally 1located secondary source provides the
best overall performance for global noise control. An
optimally located secondatry source is positioned such that
the secondary source effectively couples into the dominant
modes of the uncontrolled sound field for all frequencies
at which vreduction is desired. These conclusions are only
expected to be valid for cases of simple sound fields wherve

optimal secondary soutrce locations can be identified.
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4.2,4 Nonsymmetvric Excitation

An example of a (spherically) nonsymmetric excited
sound field is the oscillating 48 sided polyhedron which is
shown in profile in Figure 4.24. The distribution of the
velocity normal to the surface is given by un-uxcose where
X is the direction of oscillation. The oscillatory motion
of the polyhedron creates a pressure distribution which is
a function of vradial position and angular position, i.e.,

spherically nonsymmetrice.

A single secondary source positioned at the center of
the oscillating polyhedron (ux=1.0m/s) was found ts be
completely ineffective for global noise reduction.
However, two secondary soutrces positioned at (0.01m,0,0)
and (-0.01m,0,0) where found to provide significant global
attenuation at the <cost of —vrelatively 1large secondary
source strengths (case 19). The results of case 19 are
shown in Figures 4.25 and 4.26. As shown in Figure 4.25,
significant global attenuation was only attained in the
narrow-band rvegions about the natural frequencies of the

enclosure.

In Figure 4.26, note that the optimal solution for the
secondary source strengths is a dipole. The dipole form of
the solution can be explained by examining the radiation

pattern produced by the secondary sources. The radiation
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pattern of a dipole has two lobes along the axis of the
dipole (the X-axis for case 19). The pressure distribution
function of the uncontrolled sound field in «case 19 also
has maxima along the X-axis. Hence, the radiation pattern
of the secondary sources took on a form similar to the
uncontrolled sound field pressure distribution. The
radiation pattern of the single secondary source had a
spherically symmetric form and hence was unable to achieve
any attenuation. Likewise, if the two secondary sources
would have Dbeen positioned along the Y-axis or Z-axis,

negligible attenuation would have rtresulted.

To further demonsttrate the same concept, two secondarty
sources where positioned at (0.01m,0,0) and (-0.01m,0,0)
inside the uniformly pulsating polyhedron of case 1. The
form - of the optimal solution for the two secondary
secondatry sources was found to be that of a monopole, as
shown in Figure 4.27. Note, the combined source strengths
of the two secondary sources equals the source strength of
the single secondatry source of case 1 (Figuvre 4.3). Thus,
for a spherically symmetvric noise field, a cancelihg source
with a spherically symmettric radiation pattern provided

optimal performance.
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4.2.5 Effects Of Passive Noise Treatments

The effects of passive noise treatments at the
enclosure boundaries on active noise controller
requirements and performance were investigated for the
rectangular prism. Passive noise treatments were modeled
using locally rveacting, specific acoustic impedance
boundary conditions. Changes 1in active noise controller
requirements were studied for variations of three ©passive
noise treatment parameters: the resistive component, the
reactive component, and passive noise treatment surface
area. For <cases 20 through 27, the noise producing
mechanism was a primary source at (0.5m,0.5m,0.25m) with a
volume velocity source strength of 1.0 m3/sec, and a single

secondary source was located at (0.5m,0.5m,1.579m).

Cases 20, 21, 22, and 23 examined the effect of
changes in the resistive component. Case 20 is used as a
reference; all of the enclosure walls wetre vigide The wall
at 2=0 was given specific acoustic impedance boundary
conditions of 50+30, 200+j0, and 350+j0 Pa's/m for «cases
21, 22, and 23 respectively. The rtresults of case 20-23 are
shown in Figure 4.28 and 4.29. The frequencies of maximum
attenuation for case 20 avre the eigenfrequencies associated
with the (0,0,1), (1,0,0), (0,1,0), (0,0,2), and (1,0,1)

modes (see Table 4.1).
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The introduction of the vresistive ©boundary condition

at the wall at Z=0 caused a shift in the eigenfrequencies

of the cavity and hence the frequencies at which wmaxiwum

attenuation occurred. As the value of the rvesistance
increases, the modal response of the cavity becomes
increasingly damped. Because active noise controllers

function most effectively at the enclosure resonances, the
overall performance of the active noise controller
decreases with increasing values of resistance as shown in
Figure 4.28. The average values of attenuation for cases
20, 21, 22, and 23 were 4.85, 3.69, 3.01, and 2.90 dB,
respectively. As shown in Figure 4.29, the increasing
values of the tresistive component did not cause significant

increases in optimal secondary source strength.

To examine the effects that changes in the rteactive
component have on active noise controller requirements, the
wall at Z=0 was given impedance boundary conditions of
200-j1500, 200+j0, and 200+j1500 Pa"s/m (cases 24, 22, and
25 respectively). The results of cases 22, 24, and 25 are
shown in Figure 4.30 and 4.31. The presence of a reactive
component increased the magnitude of the cavity resonances.
Consequently, the overall performance of the active noise
controller increased with the addition of a reactive
component. Changes 1in the sign of the reactive component

altered the>eigenfrequencies but had no significant effect
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on the overall active noise controller requirements.

The surface area of the passive noise treatment was
increased by increasing the number of walls with impedance
boundary conditions. An impedance boundary condition of
200+j0 Pa's/m was applied to the walls at Z=0 for case 22;
Z=0 and X=0 for case 26; Z=0, X=0, and X=1.04775m for case
27. The rtesults of cases 22, 26, and 27 are shown in
Figures 4,32 and 4.33. As was the case for the increasing
value of the —resistive component, the enclosure response
became increasingly damped as the number of absorbing walls
increased. For more than one absorbing wall, significant
attenuation was not possible except at the very low

frequencies.

4.,2.6 Conclusions

From the results presented in the previous sections,
several conclusions can be drawn. First, efficient global
noise control is possible at low frequencies and at the
enclosure resonances. Second, for broadband global noise
contvrol, the secondary source(s) should be positioned at
antinodal locations of all enclosure modes. Third, if
global control of a compact noise source is sought, the
secondary source(s) should be located as close as possible
to the compact noise sourtrce. However, i1f the noise source

is distributed, maximum global noise control is attained
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when the secondary source is at an antinodal location, and
it 4is irrelevant if the antinodal location is remote or
not. Fourth, for local control, the secondary source(s)
should be located such that the response at the observation
point(s) due to the secondary sources is large. Thus, for
local control it is not always advantageous to locate the
secondavry source at an antinodal location of the
uncontrolled sound field. Fifth, for broadband 1local
control, it is beneficial to position the secondary
source(s) close to the observation point(s) to achieve
lower required secondary source strength(s). Sixth, for
low modal density aéoustic fields, effective global control
can be achieved using only one or few judiciously placed
secondary sources. Additional secondary sources do not
provide any significant improvement in the performance.
Lastly, tesistive passive noise treatments cause a decrease
in the effectiveness of active noise controllers, but the
total, combined performance due to the passive noise
treatments and the active noise <controller vemains about

the same.

Although some of the results presented here could have
been obtained with an analytical procedure, the numerical
method provides great versatility. Changes 1in system
parameters such as &enclosure shape, secondary source

positioning, and boundary conditions are easily
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accommodated with the numerical procedure. A numerical
method becomes necessary when the enclosure has a complex
nongeneralized shape, distributed sources, or distributed
damping. Although some of the results presented here are
documented in the 1literature, they were presented to

demonstrate the validity of the method.
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Figure 4.1 - System Schematic For The Active Control Of
Sound Fields With Complete System Description
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CHAPTER 5

AN OPTIMAL ACTIVE NOISE CONTROLLER FOR FREE

FIELD RADIATION

Most of the literature on active noise control for
free field radiation <consists either of experimental
prtocedures [42,43]), studies of compact noise soutrces
[30,40], or studies where the noise field is deduced by
field point measurements and thus no information about the
noise source 1is trequired [37]. Very little attention has
been given to the general problem of analyzing and
minimizing the total sound power of a noise field produced

by a generalized distributed source.

The system investigated in this chapter is comprised
of two components: a distributed noise source with a known
time harmonic surface velocity distribution and an arvay of
canceling (secondary) sources positioned about the noise
source. The geometrical shape of the noise source must be
known, but the shape is not restricted to any particular

form. The relative positions of the noise source and the
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secondary sources are also assumed known.

5.1 Problem Formulation

In the following sections, the definiéion and
formulation of an optimal active mnoise controller are
presented. The formulation for an optimal active noise
controller is derived using the IBEM formulation. 1In the
subsequent formulation, capital letters will denote matrix

quantities.

5.1.1 The Control Objective Function

The control objective chosen for the tesearch
presented here is to minimize the total sound power in the
free field. A near-field technique for calculating the
sound power output of a source was developed by Levine
[38]. Levine“’s technique is based on an acoustic energy
balance at the source, and thus, the need to integrate the
far-field intensity in order to calculate the power output
of a source is avoided. The technique developed by Levine
was applied by Nelson et al. to time harmonic monopole
sources [37]. The vesulting expression for the source
power output, w, of a monopole with a time harmonic volume

velocity source strength q is

1 *
v o= Re{ptotq} (5.1)

where Py ¢ is the total sound pressure at the source due to
o
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the source and any incident sound field, and the *
superscript denotes the complex conjuéate. The expression

Re{} is an operator signifying "the real part of {}."

In order to use equation 5.1 to «calculate the sound
power output of a distributed noise source, the noise
soutce is modeled by discretizing the noise source surface
(consistent with the IBEM) into elements with constant
surface velocity. The discretized elements of the
distributed noise source may be assumed to be individual
monopole sources characterized by a volume velocity source
strength, The volume velocity source strength of an

element is given by
q, = us (5.2)

where u is the magnitude of the normal surface velocity of

the element, and s is the surface area of the element.

Applying equation 5.1, the control objective function

was formulated as

1 H 1 H
0= 2 Re{RnSEn} + 3 Re{zsgs} (5.3)

where Rs is a column vector of the complex pressures at the
secondary sources, ﬂs is a column vector of the complex
volume velocity secondatry source strengths, Rn is a column
vector of the complex pressures at the discretized elements

of the noise source boundavry, [S] is a diagonal matrix
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containing the areas of the noise source surface elements,

and En is the column vector containing the known velocities

of the surface elements. The H superscript denotes the

hermitian transpose.

Alternatively, the power radiated from a distributed
source could be found be integrating the intensity over the

surface as

*
w = % Re{p u} d4S = % Re{RHSE} (5.4)
8

The integral in equation 5.4 was evaluated by wusing the
fact that the velocity and pressure atre constant over each

surface element.

5.1.2 1IBEM Formulation Of The Control Objective Function

The pressures at the secondary sources are given by

equation 3.38:

23 = Do + Eis (5.5)

Because there are no primary sources formulated in the

problem, the column vector ¢ in equation 3.38 contains only

secondary source strengths, and thus, ¢ will be denoted by

¢ - The (i,i) element of [E] represents the pressure at
th th

the i secondary source due to the i secondary source.

Thus, the diagonal of [E] is comprised of singular
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functions (refer to equation 3.39b).

The diagonal elements of [E] are evaluated by taking

the limit of the fundamental pressure solution as t=20:

E

-jkr
lim e lim [cos kr _ . sin kr] (5.6)

i1~ ©+0 4 = 20 T 3 v

Applying L Hospital”s tule to equation 5.6 gives

Eii = o = jk. Note that the imaginary component of Eii is

finite.
The pressures at the discretized elements of the noise

source boundary are also derived from equation 3.38:

p = Do+ EY (5.7)

s

The fictitious source strength distribution, g, is
determined from the known boundary conditions, namely, the

surface normal velocities by equation 3.25
u =TFg + Gy (5.8)

Thus, solving for the fictitious source strengths gives

-1
g =F (o - G&) (5.9)
Substituting the fictitious source strengths from
equation 5.9 into the ©pressure equations, 5.3 and 5.7,

gives the pressures in terms of surface velocities and

secondary soutrce strengths:
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p. =DF 'u_ + (E - DF ‘&) (5.10)
. ¢

and

p, = DF lu_ + (E° - DF G)y (5.11)

The secondary source strengths are related to the volume

velocity secondary source strengths by

jkpoc
s = Tam  9s T S (5.12)
By substituting the pressure and source strength

relationships from equations 5.10, 5.11, and 5.12 into
1 *

equation 5.3 and using the identity Re{C}=E(C+C ) where (

is any complex scalar, the control objective function can

be written as

o= %(12Ags + ingn + EZBHgs + gﬁCEH) (5.13)
where
A =c (E - DF TG) + [c (E - oF ley 1t (5.14a)
B = DF | + [e (E° - p-F le)1ts (5.14b)
¢ = spF |+ (0°F Hfs (5.14c)

1
Note that the uncontrolled free field power is ZEann.

In equation 5.l4a, note that [E] is multiplied by the
purely imaginary constant cs. Thus, after [E] is
multiplied by ¢ , the infinite, vteal components of the

s

diagonal terms of [E] become the imaginary components of
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the diagonal terms. When [A] is computed, the hermitian
transpose of the matrix cs(E - DF-IG) is added to itself.
Consequently, the (infinite) imaginary components along the
diagonal cancel, and thus, the diagonal of [A] is real and

finite.

5.1.3 An Optimal Controller

The control objective function in equation 5.13 is a
real, ©positive definite, quadratic function of the volume
velocity secondary source strengths. As stated in chapter
4, such a function has a single unique global minimum.
Thus, there is a unique combination of secondary source
strengths which minimize the total sound power radiated
into the free field by the noise source and secondary
sources. Utilizing equation 4,12, the minimum value of thé

control objective function occurs when

Ags + Bgn = 0 (5.15)

Thus, the optimal secondary source strengths are given by

o -1

The corresponding minimum value of the <control objective

function 1is

o o H HH o
o = H(gs=gs) =uCu +uBg, (5.17)

The attenuation due to the optimal active noise controller
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is computed from

il

ATN = 10 1og—§P- (5.18)
i

where ATN denotes attenuation and pr=n(gs-g).

5.2 Case Study Results

In this section, the results from a number of active
noise control system configurations are presented. For all
case studies, the value of poc was 415.0 Pa s/m. The
optimal controller was analyzed for two differently shaped
noise producing mechanisms. The first noise producing
mechanism 3is a pulsating sphere, 1.0m in radius, with a
time harmonic surface velocity of 1.0m/s. The ©pulsating
sphere 1is centered about the origin. The characteristic

dimension, a, of the sphere 1is 1.0m. The sphere was

modeled using 48 triangular superparametric elements.

The second noise producing mechanism is a c¢cylindrical
shell which is shown in Figuvre 5.1l. The characteristic
dimension, a, of the shell is O.lm. One face of the shell
was assigned a velocity distribution given by the zero
order Bessel function of the first kind, Jo(r), such that
Jo(0)=1.0m/s, and Jo(a) corresponded to the first zero of
the Bessel function [57]. The other sides of the shell
were rvigid. Such a model and velocity distribution were

chosen to approximate the first mode of wvibration of the
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top of a refrigerant compressor shell. The shell was
modeled wusing 96 triangular superparametric boundary

elements.

In some instances, due to numerical integration errvor,
analysis of the optimal controller could not be performed
for the very low frequency regime [47]. The numerical
integration error increased with decreasing wavenumber,
increasing proximity of the secondary source(s) to the
noise source, or increasing number of secondary sources.
Consequently, the lowest value of frequency for which

results avre treported is not the same for all case studies.

Cases I, 11, and 111 examined <changes in controller
performance as a function of the relative placement of a
single secondary source. Using the cylindrical shell
model, the single secondary source was positioned at
(0,0,0.15m), (0,0,0.35m), and (0,0,1.05m) for cases I, 1II,
and III respectively. Hence, the distance between the
noise source and the secondary source, 1, 1is O.lm, 0.3m,
and 1.0m for cases I, II, and III respectively. The active
noise controller performance is shown in Figure 5.2 while
the normalized optimal secondary source strengths are shown
in Figure 5.3 for cases I, 1I, and III. The advantage of
closely coupling the secondary source with the noise source
is apparent in Figure 5.2. Note that for 1>% (ka)O.l%), no

significant attenuation is possible [30]. 1In Figure 5.3,
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it can be seen that in the low frequency limit, the optimal
secondary source forms a dipole with the noise source.
Also note that the vrelative phase of the secondary source

is either 0° (in-phase) or 180° (out-of-phase).

Cases IV, V, and VI also investigated the placement of
a single secondary source using the shell model. For cases
IV, V, and VI, the secondary soutrce was located to the side
of the shell at (0.15m,0,0), (0.35w,0,0), and (1.05m,0,0)
respectively. Thus, the values for 1 are 0.05m, 0.25m, and
0.95m for cases IV, V, and VI respectively. The results of
cases 1V, V, and VI are shown in Figures 5.4 and 5.5. By
comparing Figures 5.2 and 5.4, it can be seen that for a
remotely located secondary soutrce (cases III and VI), the
directional location of the secondary source did not affect
the performance. The performance 1is relatively poor in
both cases except at very low frequencies. However, for a
closely coupled secondary source (cases I and 1IV), the
dirvectional location affected the performance. The
performance improved, particularly at the higher
frequencies when the secondary source was located in front

of the noise producing face.

Cases V11, VIII, IX, and X dinvestigated changes in
active noise controller performance for an increasing
number of actuators. The pulsating sphere, which produces

a spherically symmetric noise field, was employed for cases
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VII through X. The locations and wutilization of the

secondary sources for ~cases VII through X are given in

Table 5.1.

Table 5.1 - Secondary Source Data For Cases VII-X

Source No. Location (m) Cases Used
I (+2,0,0) VII VIII IX X
2 (-2,0,0) VIII IX X
3 (0,%2,0) IX X
4 (0,-2,0) IX X
5 (0,0,+2) X
6 (0,0,-2) X

The results of cases VII through X are given in Figure 5.6.
The advantage of multiple secondary soutrces in the low
frequency regime is apparent in Figure 5.6. For l>%
(ka>%), where 1 1is the distance from the center of the
sphere to the secondary source(s), no significant
attenuation is possible even with multiple secondary

sources. For cases VII through X, 1=2.0m.

The maximum, combined, normalized, optimal secondary
source strengths for cases VII, VIII, IX, and X were 1.0,
1.1, 1.25 and 2.2 vrespectively. Hence, the improvement in
attenuation is accompanied by an increase in required
secondary source strength. Due to the symmetvrical
arrangement of the secondary sources, sources 1 and 2 in

case VIII were equal 1in wmagnitude and phase for all
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frequencies considered. Likewise, for cases IX and X, at
every frequency all secondary sources wertre equal in

magnitude and phase.

Cases XI, XII, XIII, and XIV examined a symmetrcic
distribution of multiple secondary sources about the
cylindrical shell. The placement and wutilization of the

secondary soutrces for <cases XI through XIV are given in

Table 5.2.

Table 5.2 - Secondary Source Data For Cases XI-XIV

Source No. Location (m) Cases Used
) (0,0,+0.4) X1 XII XI1I XivVv
2 (0,0,-0.4) XII XLII XIV
3 (0,%0.4,0) XI1I X1V
4 (0,-0.4,0) XII1 XIV
5 (+0.4,0,0) X1V
6 (-0.4,0,0) X1V |

The results of cases XI through XIV are shown in
Figure 5.7. As was shown by cases VII through X,
additional secondary sources improve the performance only
in the 1low frequency regime. The maximum, combined,
normalized, optimal secondary source strengths for <cases
XI, XII, XIII, and XIV were 1.0, 1.21, 1.68, and 4.08
respectively. Thus, larger secondary source strengths are
required to attain the increase in performance. For cases

XI1 through XIV, sources 1 and 2 were not equal in
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magnitude or phase. For case XIII, due to symmetry,
sources 3 and 4 were equal in modulus and phase. Likewise,
in case XIV, the sources around the perimeter of the shell

(3, 4, 5, and 6) were all equal in magnitude and phase.

Cases XV, XVI, XVII, and XVIII investigated an
asymmetric distribution of multiple secondary sources about
the cylindrical shell. The secondary sources were
positioned adjacent to the noise producing face of the
shell. All secondary sources were located such that they
were O0.4m away from the origin. The cases for which each
source was employed and the source locations are given in

Table 5.3.

Table 5.3 - Secondary Source Data For Cases XV-XVIII

Source No. Location (m) Cases Used
1 (0,-0.28284,0.28284%) XV XVI XVII XVIII
2 (0,+0.28284,0.28284) XVI XVII XVIII
3 (-0.2,+0.28284,0.2) ~ XVII XVIII
4 (+0.2,-0.28284,0.2) XVII XVIII
5 (¥0.7,%0.28284,0.2) XVIII
6 (-0.2,-0.28284,0,2) XVIII

The results of case XV through XVIII are presented in

Figure 5.8.

Several conclusions can be drawn by comparing Figures
5.7 and 5.8. First, note that the symmetrically

distributed secondary sources provided better performance
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in the 1low frequency vregime. The larger attenuation
produced by the symmetrvric distribution of secondary sources
is not surprising because at the lower frequencies, the
noise source is small relative to a wavelength. Hence, the
noise source is nondirectional and will ©produce a
spherically symmetric pressure distribution. However, at
the higher frequencies (around ka=1.4 for example) where
the noise source has some directivity, the asymmetric
distribution of secondary sources provided slightly better
performance than the symmetric distribution. Also note
that the additional symmetrically placed secondary sources
did not improve the performance at the 1local wmaximum at
ka=1l.4. However, a slight improvement in the performance
around ka=1l.4 was attained with additional asymmetrically

located secondary sourtces.

5.3 Conclusions

In summavry, for increased reduction of the total
radiated sound power, all secondary sources employed should
be located within % of the noise producing mechanism.
Additional secondary sourtrces greatly improve attenuation
provided that they are located within the % criterion. If

the noise source is directional, an improvement in active

noise controller performance is attained when the secondary
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sources are located about the pressure lobes of the noise

source.

The formulation wusing the IBEM is relatively
straightforward. Such a formulation which minimizes sound
powetr could be used in cavities except that reducing power
does not necessarily mean that the potential energy in the
cavity is reduced. For example, sound power is zero in an
enclosure with no absorption, but the potential energy may
be high or low. When using the IBEM formulation, care must
be taken to avoid the wuniqueness problem discussed in

section 3.3.1.
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CHAPTER 6

AN OPTIMAL ACTIVE NOISE CONTROLLER FOR ENCLOSED

SOUND FIELDS WITH INCOMPLETE SYSTEM DESCRIPTION

The active noise controller formulated in chapter &
assumed that a complete boundary description of the
enclosure was known. The formulation provided an optimal
transfer function between the noise source strengths and
the secondary sourtce strengths. However, in some
circumstances, a complete description of the noise sources
may not be known. If exact knowledge about the strengths
of the noise sources is unobtainable, an array of detector
microphones is usually employed to sense the noise field
and provide input to the active noise controller. 1In
application, it may not be possible to measure (for input
to the controller) all the boundary conditions. In
acoustics, it is easier to measure pressure in the field
than many boundary conditions. The formulation of chapter
4 is extended in this chapter to include active noise
control systems with detector inputs. As was the case for

chapter 4, the enclosed sound field is assumed to be time
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harmonic, and the boundary geometry is known.

6.1 Problem Formulation

A schematic of the overall system formulated- in this
section is shown in Figure 6.1. The overall system is
comprised of five components: the enclosure boundary, point
noise (primary) source(s), controllable point (secondary)
source(s), obsetrvation point(s), and detector 1location(s).
With a couple of exceptions, the first four components
listed are as described in section 4.1l.1. The first
exception 1s that the strengths of the primary sources are
assumed here to be unknown. The second exception is that
the enclosure boundary is divided into "active” sections
and "passive" sections. Active sections are noise
producing whereas passive sections do not contribute to the
enclosed sound field. The boundary condition values of the

active boundary elements are considered to be unknown.

Detector locations are sites within the enclosure
where the sound field is to be measured. For the current
formulation, the detectors are assumed to be wmicrophones,
and hence, the detected parameter is acoustic pressure.

The locations of the detectors must be known.

Given the specifications of the problem, the objective

)
is to determine an optimal transfer function matrix, [H ],

such that the acoustic vresponse is minimized at the
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observation points. The optimal transfer function matrix
is defined as that which produces optimal secondary source
strengths given the detector inputs. The optimal secondary
source strengths are defined as those which minimize a
weighted sum of the magnitudes of the pressures squared at
the observation points. Consequently, the control
objective function 1is identical to the one given in

equation 4.1:

n
cp
n= 13 |p
{i=] 1

|2w (6.1)

i

The optimal transfer function is determined by minimizing II
with respect to the secondary source strengths. In the
subsequent formulation, capital 1letters denote matrix

quantities.

6.1.1 IBEM Formulation Of The Control Objective Function

If the acoustic pressure at the observation points {is
written in complex form, the control objective function can

be vrewritten as
H
I =p Wp (6.2)

where [W] is a ncp x ncp diagonal matrix with the values of

the weighting function on the diagonal, and p is a column

vector of the pressures at the observation points. The H
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superscript denotes the hermitian transpose.

The pressures at the observation points are given by

equation 4.4:

B=D3+E4 +E (6.3)

Likewise, the pressuvres at the detector locations are given

by equation 4.4:

rd -

py = Do+ Epip + E b, (6.4)

From equation 4.7, o is found as

-1
g =A(a-Cu - Co) (6.5)

Because the enclosure boundary 1s composed of an

-1
active portion and a passive portion, a and [A] are
partitioned as

a
-1 -1,122 -1 -1
g = [A | A "1|--| - A 'C¢ ~-A°C¢ (6.6)
- a p a P~Pp s—s
=P

A passive boundary condition is defined as that for which
ai=0. The three Dboundary conditions for which ai=0 are
rigid wall (u=0), pressure velease (p=0), and specific
acoustic impedance. All other boundary conditions are

classified as active. Employing the fact that gp*Q,

equation 6.6 can be rewritten as
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- a Za pgp sgs
Combining the unknown primary source strengths

unknown active boundary condition values gives

(6.7)

with the

(6.8)

For notational simplicity, equation 6.8 is rewritten as

-1
g =Fn -A C
g =T R
where
=1 -
F=1[a | -A "C_]
a
and
a
—a
n= ="
$
P

(6.9)

(6.10a)

(6.10Db)

Through a similar analysis, equations 6.3 and 6.4 can

be rewritten as
-1
p=(DF + F7)n + (E_ - DA C )¢,
and
- 1

py = (D°F + F"7)n + (E;, = D7A "C¢,

where

(6.11)

(6.12)
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F~ = [0 | E ] (6.13a)
P

F°- = [0 | Ep] (6.13b)
Using equation 6.12, the unknown noise source values are

determined from the pressutres at the detector locations as

1 1

[py + (p°A c, - E;)Qs] (6.14)

n = (DF + F° ")
Implicit in equation 6.14 is the stipulation that the
number of measurement locations must equal the sum total
number of active =elements and primary sources. This
stipulation 1is necessary so that the matrix inverted in
equation 6.14 is square. However, the problem can be
overdetermined by employing more measurement points than
unknown noise sources. Then to solve equation 6.12 for the
unknown noise source values, a least squares technique
could be used. Using a least squares method, the wunknown

noise sources avre found as

H -1 _ -1 -
n o= (T T ) T lpg * (0°A7 ¢, - ED¢] (6.15)

whetre T d=D’F+F”. For the subsequent development,
n
equation 6.14 will be wused although equation 6.15 could

have been used instead.

The unknown noise source values are eliminated from

equation 6.11 by substituting equation 6.14 into equation

6.11. The rtresulting expression is
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= Rp + T 6.16

B = Rp, + T ( )
where
..1 ’
R = (DF + F°)(D°F + F°°) (6.17)
-1 - -1
T = R(DA C -E )+ E - DA C (6.18)
-] S S S

By substituting equation 6.16 into equation 6.2, the

control objective function is obtained:
H H H_H H_H H_H
M =¢TWIg_ + p,RWIY + ¢ T WRp, + p,R WRp, (6.19)

The wuncontrolled, summed acoustic response at the

observation points is given by RgRHWRRd.

6.1.2 An Optimal Controller

As was the case for the control objective function of
chapter 4, the control objective function given in equation
6.19 is a real, positive definite, quadratic function of
the secondary souvrce strengths. Therefore, there is a
unique combination of secondary source strengths which
minimize the <control objective function. Consequently,
there is a unique transfer function matrix between the
pressures at the detectors and the secondary sourtce
strengths such that the <control objective function is
minimized. Utilizing equation 4,12, the minimum value of

the control objective function is found to occur when
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H H
T WIg_ + T WRp, = 0 (6.20)

Solving for the unknown secondatry source strengths which

minimize II gives
o H -1 H
gs = -[T WT] T WRRd (6.21)

Converting g: to volume velocity units using

o 4x o

q, = T e [ (6.22)

gives

T H -1 H
q, = jkpoc [TWT] "T WRp, (6.23)

Therefore, the optimal transfer function matrix between the

pressures at the detectors and the volume velocity

secondary source strengths is

o bx H -1 H
H = j [T WI] T WR (6.24)
kp ¢
o
6.1.3 Stability
A generally rtecognized problem of active noise

controllers is the instability caused by the positive
acoustical feedback between the canceling sources and the
detector microphones. Insight into the stability of the
active noise control system formulated in this chapter is

obtained by rewriting equations 6.11 and 6.12 as
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= T + T 6.25
2 noﬂ sogs ( )
and
= -+ T .
By Tnd:rl sdls (6.26)
where
T = DF + F~ (6.27a)
no
kpoc -1
Ts° 3 i (Es - DA Cs) (6.27b)
T = D°F + F°° (6.27¢c)
nd
kp ¢ . -1
Tsd = j i (Es - DA Cs) (6.27d)

Equations 6.23, 6.25, and 6.26 avre represented in block
diagram form in Figure 6.2. Note the presence of the
positive acoustic feedback 1loop between the secondary

sources and the detectors.

The characteristic equation, which is analyzed to

determine stability, of the system in Figure 6.2 is given

by

1 -1 u° = [0] (6.28)
sd

where [I] is the identity matrix, and [0] is the null

matrix. A stability matrix, [G], is defined as
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The stability of the active noise control system can be

determined by analyzing the characteristic equation
I + G = [0] (6.30)

using a frequency domain technique such as a Bode diagram
or the Nyquist <criterion. For the <case studies to be
presented, Bode diagrams wevre used to determine stability.
Assuming G is a scalar transfer function (for simplicity),
stability is determined by examining the O dB and —180o
crossings. If the gain of G (in dB) is greater than zero
when the phase <crosses the -180o axis, the system {is

unstable.

6.1.4 Observability And Controllability

Observability is defined for the ©purposes of this
research as the ability of the detectors to deduce the
noise field. The influence of the noise sources on the
« From

d
equation 6.14, it can be seen that it is necessary for

pressure at the detector locations is given by [‘I‘]n

[T]nd to be invertible. If ['1‘]nd

equation 6.14), then the vrank of ['1‘]nd must equal the

number of wunknown noise sources (or detectors) for the

is square (as rvequired in

inverse of [T] d to exist. 1f the problem is
n

H
overdetermined, then the rank of TndTnd in equation 6.15
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must be equal to the number of unknown noise sources for

H -1

[T .T .] to exist. Thus, the system 1is completely
nd nd "

observable if the rank of [T]nd (ot TndTnd) equals the

number of unknown noise sources.

Controllability is defined for the purposes of this
research as the ability of the secondary sources to
influence the acoustic response at the observation points.
Controllability at the ith observation point is determined

by examining the inner product of the ith tow of [T]so with

3:. If the inner product is zero, the pressure at the ith
observation point 18 uncontrollable with the current
arrangement of secondary sources. Thus, to determine

controllability, g: must first be computed from equation

6.23.

6.2 Case Study Results

Although the formulation of the previous section was
generalized for a multi-parameter system, all case studies
ptesented in this section consider a scalar system: one
unknown noise source, one detector location, one
observation point, and one secondary source. Therefore, Ho
and G are scalar transfer functions. All the case studies
presented in this section were observable and controllable.

The value of P,C for all cases presented is 415.0 Pa's/m.
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To obtain the impulse response of the system, the
optimal frequency domain solution is transformed to the
time domain using an inverse Fourier transform.. 1In the
frequency domain, the optimal secondary source strength is

given by

Q2 (w) = B ()P (w) (6.31)

To obtain the time domain solution of q:(t), a convolution

is used [58]:

t
q°(t) = [ n%t-v)p (%) d= (6.32)
s 0 d

o
where h (t) is given by the inverse Fourier transform of

the controller transfer function [59]:

ho(t) = E% / Ho(w)ejmt dw (6.33)

If pd(t) is an impulse functjon of unit amplitude, then the
time domain solution of the optimal secondary source

strength is given by

q:(t) = 1°(t) (6.34)

Therefore, the impulse response of the system is given by

0

the inverse Fourier transform of H (w). The inverse
o

Fourier transform of H (w) was calculated using an inverse

fast Fourier transform (IFFT) procedure given by Ramirez

[60]
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N-1 2nkn/N
T HO(k)ed?Tkn (6.35)
k=0

h(n) = %

where N is the total number of data samples.

The system analyzed in case i is depicted in Figure
6.3. All of the enclosure walls are vrigid. The enclosed
sound field is excited by the primary source of unknown
strength. The conjugate symmetric expansion of the
frequency domain solution of H°(w) and the impulse response
function of the system for case i are shown in Figure 6.4.
Note that the impulse response function of the system 1is
non—-convergent, and the system appears to be unstable. A
Bode diagram representation of G is presented in Figure
6.5. Careful examination of the Bode diagram reveals that
the system has a negative gain margin, and hence, the

system is unstable,

Because the enclosure was discretized using 80
elements, the accuracy of the results for Ho(w) degrade for
k greater than approximately 6.0. Therefore, the frequency
domain spectrum of H%(w) was smoothly diminished to zero
after k=5.0. To obtain higher resolution in the time
domain, the =zero-valued frequency data for 1%(w) was not
temoved from the frequency spectrum. The function used to

o
diminish the frequency domain solution of H (w) is given by

w-1715

fz(w) = %[1 + c08(1—71.—5—1t)]

(6.36)
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for 1715.0 € w < 1886.5. In addition, f (w)=0 for
z

w > 1886.5 rad/sec, and fz(w)=1 for w < 1715.0 rvrad/sec.

Because thetre were no energy absorbing mechanisms in
the system of case i, it is not surprising that the system
was unstable. The stability of the system should improve
with the addition of an energy absorbing mechanism. Case
ii is identical to case i except that the wall at Z=0 was
given an infinite termination impedance boundary condition

(z=poc). The tresults of case ii are shown in Figures 6.6

and 6.7. Note that the impulse rtesponse function
converged, and the Bode diagram for case.ii correspondingly
predicts a stable system. However, there appears to be a

low frequency noncausal component.

The low frequency noncausal component of the impulse
tesponse function for case ii results from the large peak
in the imaginary part of Ho(w) at 34.3 vrad/sec. Because
the accuracy of the 1IBEM is poor for very low frequency
analysis of cavity problems and such very 1low frequencies
are below the audible range, the frequency domain spectrum
of H(w) was multiplied by a "window" such that the 1low
frequency results for H°(w) were diminished in value.
Furthermore, such a windowing of Ho(w) is reasonable
because active noise controllers are unable to operate at

very low frequencies due to hardware limitations.
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The window which was chosen was obtained from the
definition of a Hanning window [61]. The window as a

function of frequency is given by

27n N-1

1
W(n) = 2[1 - cos(N 1)1 3 0 < n <& (6.37)
where
w
n o=z (6.38a)
“h
N =222+ (6.38b)

The quantity Aw is the discrete frequency step size, and wh

is the frequency at which W(n)=1. For frequencies greater
N-1

than Wy ( n>—3— ), W(n)=1, The frequency domain spectrum

of Ho(w) was windowed before it was conjugate symmettrically

expanded.

The conjugate symmetric expansion of Ho(w)w(w) and the
corresponding IFFT for case 1ii are shown in Figure 6.8.
For the results shown in Figure 6.8, the value of wh' was
171.5 rad/sec (27 Hz). There 1is still a small 1low
frequency component apparent in Figure 6.8. By 1increasing
the window length, the 1low frequency component 1is

diminished further as shown in Figure 6.9. For the results

shown in Figure 6.9, wh-514.5 rad/sec (82 Hz).

Case iii provided insight into a free field analysis

of an active noise control system. Case ii1i is identical
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to case i except that the enclosure boundary was completely
vremoved from the problem. The results of case iii are
displayed in Figures 6.10 and 6.11. The Bode d;agram in
Figure 6.11 predicts an extremely stable system. The spike
in the system impulse Tresponse function occurs at
t=3.55msec. The discrete time step of the data in Figure
6.10b is O.71lmsec. If an impulse is detected at t=0, it

will arrive at at the observation point at

1.3m

= 323?6;7;:: = 3,79 msec

Because the secondary source is O.lm away from the

observation point, it has to emit an anti-phase pulse at

Oulm
t = 343.0m/sec 0.29 msec

before the detected pul;e arrives at the observation point.
Therefore, the secondary source should emit the canceling
pulse at t=3.79msec - 0.29msec = 3.50msec. Thus, there 1is
good agreement between the expected solution (t=3.50msec)

and the numevrically generated solution (t=3.55msec).

As was the situation for case ii, the impulse response
function contains a very low frequency noncausal component.
However, the system analyzed in case iii should be causal.
The low frequency noncausal component is caused by the fact
that in the low frequency 1limit, the imaginavry part of

Ho(w) approaches infinity. The imaginary part of 1°(w)
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approaches infinity because the pressure at the detector is
approaching =zero in the 1low frequency limit while Q:(w)
remains finite and nonzero. As was done for case i, the
low frequency noncausal component can be diminished by
using the "Hanning" window. The result of Ho(w)w(w) for

mh=171.5 vrad/sec and the corresponding IFFT are shown in

Figure 6.12. As the window length 1is increased, the

impulse vresponse function approaches the expected solution

of a single impulse at t=3.50msec.

6.3 Conclusions

The formulation presented in this chapter demonstrates
that the IBEM is capable of providing insight into such
critical issues as stability, observability, and
controllability. Although the implications of
observability and controllability were not investigated in
the case studies presented, the possibility of doing so is
provided with the formulation and is relatively
straightforward. The <case studies presented demonstrated
the importance of damping in the system to help ensure
stability. It was also found that low frequency noncausal
components of the impulse rvtesponse function can be
diminished by windowing the corresponding frequency domain

spectrum.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The objective of the research presented in this thesis
was to develop a numerical analysis method for the
evaluation of an optimal active noise contvroller for the
generalized acoustic system. Such a generalized numerical
technique is necessary for analysis of acoustic systeams
with irregularly shaped boundaries, irregular distributed
sources, absorption, and consequently complex sound fields.
The numevrical technique <chosen was an indirect boundary
element method. The indirect boundary element method
prtoved to be teasonably accurate, computationally

efficient, and versatile.

Using the indirect boundary element method, three
formulations of an optimal active noise controller were
derived. The first formulation provided an optimal
transfer function mwmatrix between a known noise source

strength and the secondary source strength(s) for the
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interior problem. The optimal transfer function was
obtained by minimizing the acoustic pressure at a number of
discrete interior locations. The first formulation
provided insight into the controllability and performance
of the system. The second formulation provided an optimal
transfer function between a known noise source strength and
the secondary source strength(s) for the exterior problem.
The optimal solution was determined by minimizing the total
sound power vadiated into the free field. The third
formulation provided an optimal transfer function between
the pressures at detector 1locations and the secondary
source strength(s) for the interior problem. The optimal
transfer function was obtained by minimizing the acoustic
pressure at a number of discrete interior 1locations. The
thicd formulation provided information on the
controllability, stability, and observability of the

system.

For all three formulations, the resulting control
objective function was a real, positive definite, quadratic
function of the secondary source strength(s). Thus, it {is
possible to attain a unique global minimum of the control
objective function. For interior problems, it was found
that an actuatotr is not necessarily needed for every mode
of the enclosure to achieve a rteduction. However, the

global minimum attained with only a few actuators usually
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does not have a zetro value. Theoretically, complete,
global attenuation of an enclosed noise field is possible
if one properly employs an actuator for every enclosure
mode. However, due to modal spill-over and the fact that
there are an infinite number of enclosure modes, complete,
global attenuation would require an infinite number of
actuators in theory. In practice, a very large number of
actuators would be needed for such a modal control strategy
because most realistic cavities have high modal density

beyond the frequency region of the first ten modes or so.

From the case studies presented, a number of general

conclusions can be drawn.

- For enclosed sound fields, active noise control is
effective at very low frequencies and at the enclosure

resonances.

- The strategies for optimal active noise <control 1in
cavities are different for global and local control.
For global control it is important to locate the
secondary source(s) at the antinodal locations of the
unconttrolled enclosure response. For local control it
is 4important to locate the secondary soutrce(s) such
that the response at the observation point(s) due to

the secondary source(s) is high.
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- For 1local or global <control in lightly damped
enclosures, the active noise control system is likely

to be unstable.

- For free fiel@ power rvadiation, effective active noise
control is only attained when the secondary sources
are located within a half wavelength of the noise
producing mechanism. Additional secondary sources
greatly improve the ©performance provided they are

located within a half wavelength of the noise source.

- It is difficult to develop general guidelines for
active noise controllers. Each application is unique.
Thus, a versatile design analysis tool, such as the

one presented heve, is attractive.

- Analysis of optimal active noise controllers wusing a
numerical procedure proved to be straightforward and
versatile. Changes in boundary geomettry, boundary
conditions, source quantity and locations were easily

implemented by changing input data.

7.2 Recommendations

Although the linear superparametric elements used for
the current research proved to be reasonably accurate for
most citcumstances, a more sophisticated higher order

element might be useful when accurate modeling of curved
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boundary geometrties is needed. Because a more
sophisticated element would increase computational
requirements, it should only be used when accurate results

ave desired for a specific application.

The control objective functions formulated in this

thesis are not necessarily the only choices for all
situations. For example, the control objective function
formulated in chapters 4 and 6 did not consider the
magnitudes of the secondary source strengths. Thus, in
some circumstances the optimal solution gave secondary
source strength magnitudes approaching infinity. A control

objective function of the form
H H
= + 70
T=pWp*alWa, (7.1)

may be more practical. Due to the flexibility of the
indirect boundary element method, changing the control
objective function only rtrequires minor restructuring of the

optimal active noise controller computer code.

An approach to active noise control which was not
formulated in this thesis is that of controlling a portion
of the enclosure boundary to achieve <cancellation. The
actuator in this approach would most likely be a shaker or
an arvay of shakers attached to the boundary. To formulate
this approach the boundary condition vector (&) would be

partitioned into a controllable part, gc, and an




217

uncontrollable (noise) part, Euc‘ The resulting control

objective function would then be minimized with respect to

9, and .
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